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Executive Summary 

5G is the very first mobile wireless technology that seeks to connect anything anywhere, making communications both 
ubiquitous and as transparent as the air we breathe. A 5G ecosystem is emerging that is using pervasive, ever-present 
communications to expand the reach and scope of today’s human-centric consumption patterns. One of 5G’s greatest 
challenges ahead involves an increasingly complex, multi-dimensional, multi-variable world in terms of an ever-expanding 
multitude of service requirements and disparate traffic profiles. Additionally, a newly-introduced heterogenous mix 
of enabling technologies for both communications and compute, as well as their control, are adding to this emerging 
challenge.

An important part of the 5G ecosystem is edge computing. It facilitates radical new use cases that extend from the 
data center core to the network edges. Edge computing allows for compute and analytics to be moved closer to the 
data instead of exchanging ever growing amounts of data among cloud servers. As the ecosystem evolves, 5G and edge 
computing will further converge to enable edge network management, collect and capitalize on massive amounts of data 
while maintaining integrity and even ownership, and build pervasive intelligence for enabling various latency-sensitive, 
enterprise, and private services.

Two tasks are fundamental to address the complexity challenge and for the ecosystem to succeed: automation 
and optimization. Automation is required to cope with new scenarios in network and edge planning, operation, and 
management. Automation should ease the operation of network and compute infrastructure for rapidly growing vertical 
industries, transportation, and enterprise use cases that are bringing along with them new infrastructure owners. 
Optimization should also ease the extension of cloud computing and fast-growing Artificial Intelligence/Machine Learning 
(AI/ML) applications to the edge, as well as introduce self-optimization to best serve applications. Optimization strategies 
will ensure that every node in mobile networks can provide low latency, high reliability, and pervasive intelligence 
capabilities.

The first three chapters of this technical whitepaper details where and how intelligence can support the cross-over of 
communications in a 5G network and edge computing in a 5G edge network. Chapter 1 focuses on automation, while 
Chapter 2 looks at optimization of compute and communications. Chapter 3 provides insights on how to apply them. 

The first two chapters will follow the same story line, starting with the specific background and introduction of the current 
state of the art and industry landscape. This is followed by a discussion on features and key technologies. Based on this 
discussion, the sections develop foreseeable requirements, illustrate emerging directions for network architectures, and 
conclude with system recommendations. Chapter 3 combines this understanding, with applications in potential use cases 
for autonomous industrial solutions, smart transport and energy, connected health, and digital twins – and more. 

Core to the discussion include the technical capabilities of 5G and edge computing, where the intelligence of 5G network 
and edge computing can achieve interesting results. These include the automation of data collection, analysis and 
communication, and computing automation for ease of management. They may also include the optimization of network 
and computing to best support AI/ML applications at the edge, enabling pervasive intelligence at connected devices, 
distributed learning, situational networks, and collaborative edge intelligence.

This paper is the joint effort of experts from many different technical disciplines spanning research, development, 
operations, and applications. The result is a comprehensive discussion and guide that also shows how multi-dimensional 
complexity challenges can be tackled, bringing together expertise from multiple backgrounds united by a common 
goal: automating and optimizing 5G networks to capitalize on edge computing advances that serve future customer 
requirements and applications.

The combination of 5G and edge computing will create new capabilities and new business opportunities for the whole 
communication and computing industry. We hope this white paper will help the ecosystem achieve a consensus around 
the future of 5G and the edge technology roadmap, working closer to realize the vision, and bring a better automated, 
intelligent world together.
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1. 5G Edge Automation 

Cellular services have historically been delivered from a centralized location. 
Traffic from many cell sites is transported back to a central location, where it is 
hosted in a mobile packet core that provides connectivity to the wider Internet. 
However, the drawbacks of this approach have become apparent in the face of 
emerging applications that require low latency, high reliability, high bandwidth, 
and are characterized by localized communication among peers that share 
a common local domain. In many cases, rather than centralizing the entire 
service delivery, computation is needed for things such as automation of edge 
applications like video analytics, process control, self-driving cars, and more. 

In this context, mobile network virtualization and cloudification of Radio Access 
Networks (RAN) have gained momentum in recent years. By decoupling 
hardware and software, network element protocol stacks can utilize the 
computing resources at the base stations or data centers near the radios and 
cell towers. This new paradigm creates new pools of computing resources at the 
edge of the network that can be utilized by other applications for different use 
cases, which has caused edge computing to become successful over the past 
decade. 

The edge is defined as a continuum of edge zones, including such examples as: 

• Device edge – signal and data processing on the device
• Premise edge – processing that occurs on the premise (home, car, 

enterprise, etc.)
• Access edge – processing at cell sites or access Points of Presence (POP)
• Metro edge – upstream aggregation centers like Internet service providers, 

etc.
This combination of different sizes of cloud data centers at global, national, 
local/regional, and potentially access locations are integrated into the network 
and operated by a central orchestration and management system. The exact 
specification of the infrastructure on the different sites may depend on the 
use cases and applications onboarded. In addition, there can be several 
infrastructure providers at the same site.

Automation at each of these edge zones has different forms and requirements. 
For example, an Internet of Things (IoT) device can perform autonomous and 
intelligent local computation based on its sensed environment. Automation can 
also impose a power reduction of IoT devices to conserve as much energy as 
possible. Another example involves self-driving cars, which can process data 
at the premise edge, as well as upload training data to the metro edge via the 
access edge for machine learning algorithms. Hence, various edge zones can be 
located at different locations, can execute different functions and/or decisions 
for different requirements, and may exchange information or data with each 
other. 
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1.1 Background 
The term “Network Automation” or in short “Automation” has been used in the 
communication industry to describe a wide range of technologies that would 
help automate network system processes and service delivery with reduced or 
minimized human intervention. Human intervention is reduced by introducing 
predetermined decision criteria and related actions and embodying those 
predeterminations into the processes. Automation includes the use of various 
control systems for operating the network and services. Within this context, 
terms like “policy”, “control-loop”, and “autonomic decision-making” are used. 

A policy governs the choices behavior (decisions) in a system. The functionality 
of a system, its invariant part, is called its “mechanism”. Policies are the variant 
part of a mechanism and are either static or non-static. 

While static policies do not change over time or based on conditions, non-static 
policies change at runtime. There are three different non-static policy types: 
context -aware, adaptable, and adaptive. A context aware policy changes its 
decisions using context from its inputs (events), its own context, or outside 
information called external context. An adaptable policy changes its decisions 
based on any external stimuli (including context), such as with a particular 
configuration or parameters. An adaptive policy changes its decision-making 
behavior based on internal stimuli, for instance history of decisions or learning 
from previous decisions. 

Adaptable and adaptive policies can also be based on Artificial Intelligence (AI) 
techniques, which are then typically categorized as intelligent policies. A policy 
has input and output interfaces, which are translated into interfaces towards 
some triggering mechanism for input and some actioning mechanism for output, 
both of which are outside the policy system. Consequently, one can connect any 
policy with any triggering system (and concrete protocol and communication) 
and any actioning system. Extending the interfaces for feedback is also possible. 
This is important especially in closed feedback control loops and can help to 
build self-stabilizing policy systems.

A closed-loop control system is an essential feature of the automatized work 
process. In its simplest form, within a closed-loop control system, a controller 
compares a measured output value of a system with a desired value. In case of 
a mismatch between these values, the controller decides on the actions needed 
to achieve the desired value by updating or changing its decision-making policy. 
Hence, closed-loop control is the enabler of adaptive decision-making. This 
process does not require any manual input or control and therefore, leads to 
automation.

Closed-loop control ensures that a deviation from a desired value is mitigated 
by updating a system’s policy, which is known as autonomic decision-making. 
From here, policies adapt to evolving or varying changes in the system. This 
adaptation can be realized by enhancing the capabilities of the policy itself or 
by automatically re-authoring a policy. Three aspects are important to achieve 
autonomic decision-making:

• A policy should use a decision-making approach rather than a decision 
selection approach

• A policy should be able to use contextual information for its decision-
making approach

• A policy should be able to change its decision-making process at runtime. 
Once these features are enabled in a dynamic system, automation can be 
achieved, and human intervention can be minimized, which is the anticipated 
goal of automation at the 5G network edge. As a result, automation in general 
will continue to advance rapidly in areas where there are real and tangible 
benefits (e.g., manufacturing, automotive, telecommunications, etc.). For 
instance, integrating AI advances into automation will enrich the human 
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experience, such as allowing people to have enriched dialogue with personal 
devices and obtaining advice and guidance. AI continues to make steady 
progress in areas of speech recognition, decision making, and visual perception.

Automation is therefore needed to dynamically control (via control loops) and 
optimize (based on autonomic decision-making with adaptive policies) the 
heterogeneous networks of tomorrow. To support such automation, AI and 
Machine Learning (ML) are key ingredients. Figure 1 below demonstrates how 
autonomic decision-making can be impacted by external goals and context.

Figure 1 Autonomic decision-making driven by external goals and context.

There are some key advantages to automation in general. First, there will be 
an overall improvement in efficiency. Software agents are good at executing 
repetitive tasks to streamline production output, reduce or eliminate human 
errors and deliver high quality of assurance. AI data, collected and learned at 
the edge, focuses on the environment at that specific local edge and dynamic 
policies would adapt accordingly at that specific edge location. Second, 
shifting to automation and AI will mean technicians are working fewer hours in 
dangerous conditions, which will decrease workplace injuries. Third, intelligent 
automation will also provide interesting opportunities for workers to focus on 
more complex and innovative tasks. 

Additionally, automation at the edge can be used to target workloads that 
are sensitive to stringent timing latencies. In this regard, context information 
that is exchanged between devices and agents deployed at the edge can 
help to optimize the workload-resulting in the reduction of completion time or 
improvement of algorithm performance.

Automation at the edge can be further improved with 5G’s drastically increasing 
capabilities in data transfer rate, capacity, device density, and reduced latency 
and energy consumption. This powerful combination enables a wide range of 
use cases that will mark a significant transformation in our lives. From smart 
homes, smart cities, smart cars to Augmented Reality/Virtual Reality (AR/VR), 
3D video, and e-health, the 5G network will become a ubiquitous and pervasive 
layer that touches every aspect of our daily lives. 

In the meantime, innovative industrial applications enabled by 5G are being 
utilized to monitor, alert, diagnose and control activities across manufacturing, 
energy, utilities, transportation, smart grid, security, and public safety. The use 
of Software Defined Network (SDN), Network Function Virtualization (NFV), and 
edge computing in 5G increases flexibility by dynamically scaling resources, 
offering compute capability near the devices and exposing real time network 
measurements for the introduction of automation at the edge as well as AI-
based decision-making.

Automation at the edge can facilitate new use cases that add value to the end 
customer. Near-real time analytics at the edge can provide timely insights to 
optimize end user performance by prioritizing radio resources automatically. If 
the Service Level Agreement (SLA) deteriorates or starts drifting, new resource 
management policies can be automatically created and applied to the system 
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without human intervention. Another example where automation at the edge 
can be beneficial is to apply reinforcement learning for problems where the 
modelling of the environment is challenging or even currently impossible for 
instance, in network slice admission control or for problems where the optimal 
decision-making policy is not known due to the lack of a master/genie and must 
be intelligently approximated via trial and error. 

Lastly, reinforcement learning algorithms need to evaluate the entire state 
of network resources, which might lead to scaling problems with increasing 
network size, and intelligently admit or reject these creation requests based on 
knowledge developed through exploration and exploitation of different decision 
options. Nevertheless, a superior level of “thinking” and “learning” will be 
needed to complement network automation on a path to realize the zero-touch 
network vision.

1.2 State of the Art and Industry Landscape 
The RAN, Transport and Core ecosystem processes and technologies are deeply 
rooted in many standards organizations. These bodies establish standards that 
deal with automation and edge and include Zero-Touch Network and Service 
Management (ZSM), NFV Management and Orchestration (MANO), and Multi-
Access Edge Computing (MEC). We provide a brief overview of the state of the 
art in edge automation and related standards and technologies and highlight 
3rd Generation Partnership Project (3GPP) standards, such as Self-Organizing 
Networks (SON), Network Data Analytics Functions (NWDAF), as well as 
industry efforts like O-RAN and Tele-Management Forum (TMF), the European 
Telecommunications Standards Institute (ETSI) ZSM standard, and open-source 
activities.

1.2.1 Edge Automation related 3GPP Standards
As 5G networks are intended to support various new services such as 
IoT, cloud-based services, industrial control, autonomous driving, mission 
critical communications, etc. with ultra-low latency and high data capacity 
requirements, the 5G system architecture [1] supports edge computing 
to enable such services by applications that are hosted closer to the user 
equipment’s (UE) access point of attachment in order to reduce the end-to-end 
latency and the load on the transport network. Additionally, edge computing 
deployment scenarios and use cases have been defined to guarantee end-to-
end service requirements and discuss potential deployment solutions [2]. 

Furthermore, 5G system enhancement for edge computing capturing a reference 
architecture, connectivity models, procedures for supporting edge computing [3] 
as well as enhancements of edge computing management [4] have also been 
introduced. Finally, from the application point of view, a technical specification 
that provides an application layer architecture and related procedures for 
enabling edge applications over 3GPP networks have been defined [5]. 
Moreover, studies on architecture enhancements for 5G systems to support 
network data analytics services [6], enablers for network automation for 5G 
systems [7], enhancement of Management Data Analytics (MDA) [8], [9], 
enhancement for data collection for 5G New Radio (NR) and Evolved-Universal 
Terrestrial Radio Access New Radio Dual Connectivity (EN-DC) [10], [11], [12]. 

1.2.1.1 Self-Organizing Networks

The concept of SON plays a major role and is an integral part of legacy mobile 
radio access networks. SON is an automation technology to enable simpler 
and faster planning, configuration, management, optimization, and healing of 
the mobile network. SON is commonly divided into three architectural types: 
centralized SON (C-SON), distributed SON (D-SON), and hybrid SON (see Figure 
2). C-SON functions are typically concentrated closer to higher-order network 
elements where network management systems are located to potentially allow 



8 5G Edge Automation & Intelligence| October 2021

the autonomous control of a larger 
number of network elements and their 
coordination. In D-SON, functions are 
distributed among various network 
elements, including the edge, to 
potentially autonomously control 
various SON features, such as load 
balancing or antenna tilt configuration 
in a closed loop environment. A hybrid 
SON is a mix of C-SON and D-SON. 

With the emergence of enhanced AI/
ML techniques, enhancements of SON 
with cognitive features are gaining 
momentum with the introduction of 
more agility in the network achieved 
by software/hardware decoupling, 
virtualization, increased compute, and 
decoupling of the protocol stack. While 
research in this context is ongoing, 
novel concepts and solutions are 
introduced and explored to handle 
the complexity of 5G networks with 
zero-touch network optimization and 
real-time problem solving. 

1.2.1.2 NWDAF 

On the 5G core network side, network 
automation and data analytics have 
been enabled with the introduction 
of the NWDAF in 3GPP Release-15. 
These operations have also been 
enhanced in subsequent releases 
[13]. NWDAF was introduced 
to provide analytics to 5G core 
network functions and to Operations 
Administrations and Management 
(OAM). Network policy decisions are 

Figure 2 C-SON and D-SON control loops in O-RAN. 

made based on network analytics, 
which allows the Policy Control 
Function (PCF) or any other 5G core 
Network Function that has subscribed 
to NWDAF output to perform decisions, 
such as to update and/or adapt a 
policy by considering the analytics 
information provided by the NWDAF. 

The PCF request may be triggered 
based on a request from other 
network functions, modification 
requests, or any changes in the 
network. The following analytics 
are relevant for policy decisions: 
“Load level information”, “Service 
Experience”, “Network Performance”, 
“Abnormal behavior”, “User Equipment 
(UE) Mobility”, “UE Communication”, 
“User Data Congestion”, “Data 
Dispersion”, and “WLAN performance”. 
As illustrated in Figure 3, such input 
data and analytics are collected by 
the NWDAF to make policy decisions. 
The output of the NWDAF serves the 
network functions and the OAM to 
decide how to use the data analytics 
provided by the NWDAF to improve the 
network performance, which reflects a 
closed-loop control system framework. 

NWDAF is expected to have a 
distributed architecture providing 
analytics at the edge. Currently, 
studies on network automation 
enhancements are ongoing and focus 
on topics such as how to enable 
real-time or near-real time NWDAF, 
how to enable NWDAF-assisted user 

plane optimization and the interaction 
between NWDAF and AI model and 
training services. Within a network, 
NWDAF can be implemented in a 
centralized manner, distributed 
manner, or a hybrid of the two. 
When NWDAF is implemented in a 
distributed or in a hybrid manner, it 
is possible that distributed instances 
of NWDAF are placed at the edge to 
help with edge automation use cases. 
In this manner edge data would be 
stored, processed and analyzed 
locally. This would also help reduce 
latency and the overhead of carrying 
data across the network.

1.2.2 Open Radio Access 
Networks 
Open Radio Access Networks are 
often abbreviated as “Open RAN”, 
“OpenRAN”, as well as “O-RAN”. 
For the purposes of this white 
paper, “Open RAN” (note the 
space between the words) refers to 
open and interoperable interfaces 
within and between various 
subcomponents of the RAN. Hence, 
it refers to the movement in wireless 
telecommunications to disaggregate 
hardware and software and to create 
open interfaces between them. 

OpenRAN, on the other hand, refers 
to one of the two groups within the 
Telecom Infra Project (TIP), i.e., the 
OpenRAN project group, which is an 
initiative to define and build previous 
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generations RAN solutions based 
on general-purpose, vendor-neutral 
hardware and software-defined 
technology, or the OpenRAN 5G NR 
project group which focuses on 5G NR. 

O-RAN (or alternatively ‘ORAN’ in 
some cases), is an acronym for the 
O-RAN Alliance, which publishes new 
RAN specifications, releases open 
software for the RAN, and supports 
its members integration and testing 
of their implementations. Throughout 
this white paper, the abbreviations will 
be used based on these definitions.

Open RAN disaggregates the RAN. 
In O-RAN this is done by using 
open interfaces and incorporating 
the concept of RAN Intelligent 
Controllers (RICs) that can host 
smart applications (i.e., rApps and 
xApps) and perform radio resource 
management functions at a per UE 
level. These controllers extend new 
management and control interfaces 
to the RAN ecosystem (namely O1, 
O2, A1 and E2). Edge cloud servers 
will typically host the Near-Real Time 
RIC while centralized data centers will 
typically host the Non-Real Time RIC. 
Automation at the edge will involve 
both types of controllers, i.e., RICs, 
and orchestration engines. O-RAN is 
defining or clarifying the usage of the 
interfaces between the different parts 
of the RAN.

Figure 3 General framework of 5G (core) network automation.

These parts and their respective 
interfaces are identified and clarified 
in Figure 4.

• Orchestrator and RIC component 
– A1 interface.

• RIC and Centralized Unit/
Distributed Unit (CU/DU) – E2 
Interface.

• CU-CP (Control Plane) and CU-UP 
(User Plane) – E1 Interface.

• CU-DU – F1 interface.
• DU-RU (Radio Unit) – Open 

FrontHaul.
• Orchestrator and Cloud Platform 

(O-Cloud) – O2 Interface.

1.2.3 Tele-Management 
Forum (TMF)
TMF has several projects focused on 
edge automation. For example, the 
Catalyst project [15] is constructing 
a standardized Edge Compute-as-
a-Service (ECaaS) for realizing zero 
touch edge solutions. Another project, 
AI Operations (AIOps) [16] is targeting 
how AI can drive closed-loop service 
assurance in communications service 
provider’s network services. 

1.2.4 ETSI Zero Touch Network 
and Service Management 
(ZSM)
ETSI aims to deliver a framework 
within the ZSM industry specification 

group that enables automation of the 
end-to-end network management with 
minimal to zero human intervention. 
The scope of ZSM includes the RAN, 
transport, core, NFV, SDN, legacy, and 
everything in between, that makes up 
a communication service. The ZSM 
framework facilitates collaborative 
management interactions between all 
elements and all layers of the network 
enabled by closed-loop automation, AI, 
adaptive ML, and cognitive technology. 
The architecture is service-based, 
modular, flexible, scalable, and is 
defined in [17]. 

The ZSM framework defines standards 
interfaces that enable interactions 
between management domains, 
coordination between different closed 
loops, and interactions between AI 
components and closed loops, and 
hence, provides the glue allowing 
interactions of various components, 
enabling the autonomous 
management of the end-to-end 
network.

The complexity of the resources at 
the 5G edge can be abstracted by 
a management domain in the ZSM 
architecture. The interactions between 
management domains and the end-
to-end service domain are defined by 
ZSM. Management domains in the 
ZSM architecture allow the separation 
of management concerns [18], and 
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Figure 4 O-RAN architecture [14].

can consist of components in the 
3GPP RAN, 3GPP Core, Transport 
domain, NFV components, O-RAN, 
Open Network Automation Platform 
(ONAP), etc. 

1.2.5 Open Source 
There are several open-source related 
projects relating edge clouds and 
automation. The Linux Foundation 
(LF) is driving several initiatives 
to bring together an ecosystem of 
open-source items. These items 
range from RAN orchestrators, policy 
guided RAN controllers to mobile 
packet core. LF aims to establish an 
open, interoperable framework for 
edge computing powered by AI/ML. 
Fostering cross-industry collaboration 
across IoT, Telecom, Enterprise and 
Cloud ecosystems is key to deliver 
value to end users. 

At the 5G edge, an open-source 
software for carrier-scale edge 
computing applications that run in 
virtual machines and containers to 
support reliability and performance 
requirements has been introduced. 
Within the LF community, LF Edge, 
has several projects targeted for the 
edge cloud. LF Networking is leading 
a community-driven integration and 
proof of concept involving multiple 
open-source initiatives to show end-to-
end use cases demonstrating various 
implementation architectures for end 

users. The 5G Super Blueprint covers 
RAN, edge, and core for enterprises 
and verticals. It spans a broad variety 
of use cases including 5G, AI, edge 
Infrastructure-as-a-Service/Platform-
as-a-Service (IaaS/PaaS), IoT. The 
goal is to offer flexibility to scale edge 
cloud services quickly, to maximize the 
applications or subscribers supported 
on each server, and to help ensure 
the reliability of systems that must be 
functioning at all times.

1.3 Envisioned Features and 
Key Technologies
This section describes envisioned 
features and key technologies required 
for the implementation of edge 
automation and its enhancement as 
well as which can benefit from edge 
automation.

1.3.1 Distributed Data 
Collection, Normalization, and 
Real-Time Processing 
Big data management is a challenging 
area of research. The problem 
becomes even more of a challenge 
when the data must be collected and 
processed to produce control signals 
that are sent back to the network in 
near real-time. A mix of data streaming 
technologies, in-memory and on-disk 
storage, and compute facilities will 
need to be located close to the edge 

of the network to minimize the latency 
and maximize the bandwidth of such 
processing. Standards for collecting 
operational and control data from the 
network (such as O-RAN Alliance’s O1 
and E2 interfaces [14]) are a must-
have, but platforms must also provide 
the ability to implement customized 
normalization and machine-learning 
procedures to meet highly variable 
and rapidly changing business needs.

An important concern is how to meet 
the data collection and processing 
requirements in a manner that retains 
the ability of network operators and 
other stakeholders to mix-and-match 
solutions from different vendors, as 
well as the open-source community, 
so that they retain ownership and 
control of the data instead of being 
locked into proprietary database 
technologies. An open, high 
performance data streaming solution 
such as Kafka [19], Pulsar [20], and 
Rabbit-MQ [21] will have a role to play 
in any such architecture, along with 
data lake technologies that provide 
easy on-ramps and off-ramps for 
collected data and co-located compute 
facilities such as Spark [22] that will 
minimize the need to transport data 
from place to place when executing 
normalization activities or building 
insights.
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1.3.2 Context Discovery and 
Situational Awareness 
The ability to turn data from multiple 
sources into knowledge and exposing 
it as actionable insights is one of 
the key elements of understanding 
behavior while applying it to build 
situational awareness. This requires 
using computer vision, enhanced 
location services, network APIs 
exposing congestion data, and 
connection availability. 

In addition to that, Application 
Program Interfaces (APIs) pairing 
application/device needs with 
matching available edge locations 
are necessary to offload and 
connect clients to best fitting edge 
cloud nodes. This should be based 
on geography, compute, storage, 
memory, and power requirements 
as well as other contextual insights. 
This bi-directional exchange of 
information should allow edge-enabled 
applications to be context-aware yet 
location independent.

Security policies can also be applied 
based on network and location 
insights. For example, an autonomous 
car would turn on Virtual Private 
Network (VPN) for a public Wi-
Fi connection in a shopping mall 
before sending telemetry data on an 
identified fault versus when connected 
to a secure 5G slice on the road.

1.3.3 Network Slicing and 
Dynamics 
A network slice is a logical end-
to-end network defined over a 

Figure 5 Intelligent Automation solution architecture.

common infrastructure comprised 
of physical and virtual resources. 
As the definition implies, a network 
slice supports end-to-end network 
connectivity for end-users, humans, 
and machines. Therefore, most of 
the actions performed on the traffic 
in a 5G network will take place at 
the edge, where content is created 
and consumed. Each slice is virtually 
isolated from another and is designed 
according to the specific needs of the 
application or end-user.

With network slicing being critical to 
the successful delivery of 5G services, 
mobile and wholesale operators alike 
should be able to plan, design, and 
activate thousands of customized 
network slices for their customers very 
quickly. They also should be able to 
modify and scale a slice up or down 
to address changing performance 
demands for optimized end-user 
experiences.

1.3.3.1 Intelligent Edge 
Automation for 5G Slicing

Intelligent, analytics-driven automation 
is more than just automating manual 
processes. It is the ability to take 
input from several sources, such as 
the network itself, analyze that input 
to generate actionable insights, and 
then execute upon them via intelligent 
actions. This type of automation is 
required in the complex end-to-end 
setting of 5G architecture. Intelligent 
automation is required at the edge 
of the network where most of the 
services will be provisioned, including 
network slices. Furthermore, by 

incorporating analytic and AI capability 
into edge automation process, 
critical insight can be extracted from 
network measurements and be used 
to generate optimal, dynamic slicing 
configurations allowing rapid service 
deployment and providing a framework 
with business agility and flexibility.

With intelligent edge automation, 
operators can implement zero-
touch slice lifecycle management, 
which includes automating the 
design, creation, modification, and 
monitoring of end-to-end network 
slices as well as the provisioning of 
underlying resources to a slice, as 
and when required. The intelligent 
edge automation solution should also 
support the scaling and orchestration 
of network resources for 5G Core, 
xHaul (combination of backhaul, 
midhaul, and fronthaul), and RAN, 
along with the creation and operation 
of network slices. Figure 5 illustrates 
such an intelligently automated 
solution architecture.

Intelligent automation software is 
the key to the proper placement of 
Cloud-native Network Functions/
Virtual Network Functions (CNFs/
VNFs) within a mobile network and 
enabling Mobile Network Operators 
(MNOs) to maximize the utilization of 
network resources by re-allocating 
unused resources to other slices. With 
its advanced analytics, AI, ML, and 
automated orchestration features, 
an intelligent software solution 
enables the creation of a self-driving, 
self-healing, and self-optimizing 5G 
network with zero-touch capabilities.
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1.3.3.2 Zero-Touch Network Slice 
Life Cycle Management

The massive number of network 
slices that will be required and the 
speed at which the services will have 
to be managed, make it impossible 
for mobile and wholesale operators 
to accomplish this process manually. 
Zero-touch automation capabilities 
are a necessity to efficiently manage 
the lifecycle of network slices. Figure 6 
demonstrates what the network slice 
lifecycle management would look like 
in a 3GPP standardized network.

An intelligent edge automation 
software solution can automate the 
entire Lifecycle Management (LCM) of 
network slices and includes support 
for the Global System for Mobile 
Communications Alliance (GSMA) Slice 
Template for the initial design phase. 
Using this solution, operators can 
plan, design, and create new network 
slices, monitor and modify a slice 
to meet Quality of Service (QoS) or 
customer requirements, deactivate it 
when no longer required, and release 
associated resources back into a 
federated inventory system.

1.3.3.3 Rapid Service Deployment

As 5G adoption increases across new 
industry verticals, explosive growth in 
the number of services is expected. 
Users will demand faster deployment 
of new services that meet their 
specific end-to-end QoS requirements. 
An optimal 5G automation solution 
featuring network-wide correlated 
analytics, automated orchestration, 
and zero-touch capabilities can help 
operators reduce the time to plan, 
design, and deploy new services 
across the multi-layer, multi-vendor, 
multi-domain network from weeks or 
months to a few minutes. The rapid 
deployment capability reduces the 

time to market for service offerings, 
increases customer satisfaction, and 
shortens the time to revenue for the 
operator.

1.3.3.4 An Open and Standards-
Based Solution

A 5G automation solution should 
support a wide range of industry 
standards initiatives, open-source 
projects, and Open APIs from the 
TMF, Mobile Ecosystem Forum 
(MEF), Open Networking Foundation 
(ONF) and others. Aligned with this 
approach, a zero-touch slice lifecycle 
management solution should 
support the Communication Service 
Management Function (CSMF), the 
Network Slice Management Function 
(NSMF), and the Network Slice Subnet 
Management Function (NSSMF) 
standard, as detailed in the 3GPP 
specifications, also referenced in the 
ETSI NFV MANO framework.

In order to adhere to emerging 5G 
standards, increase flexibility, and 
support a multi-vendor network, 
an intelligent analytics-driven edge 
automation solution should be 
designed and developed as a cloud-
native application built upon a 
containerized, microservices-based 
architecture.

1.4 Requirement Analysis 
Automation itself and the techniques 
to automate processes are not 
different in the edge compared 
to other places in the network. 
Edge automation will require event 
processing, analytics, closed loop 
control, and policies the same way 
as Transport or Core. However, the 
circumstances at the edge will require 
a specific way of applying these 
techniques, with some degree of 
uniqueness.

Devices (UEs and others), sessions 
(network and application) and users 
now consume resources such as 
compute, storage, sensing, services, 
and applications close to their current 
location in the network (or at least 
definitely closer than before). This 
requires a very different approach 
to automate resource management, 
while also maintaining “classic” (non-
edge) usage scenarios:

Edge resource management: This is 
usually the first target for automation 
and should cover all relevant zones 
(device, premise, access, metro) 
and must guarantee that availability 
and quality access to all resources 
for any given number of consumers 
(devices, sessions, and users) active 
in those zones. In static scenarios, 
where neither the consumers nor the 
resources or the network conditions 
change, “classic” automation 
techniques should be sufficient. Any 
dynamicity – for example devices 
moving in and out of edge zones, 
sessions migrate between devices, 
compute and storage being changed, 
applications being updated or 
moved – can result in rather complex 
scenarios.

Edge infrastructure: compute and 
storage, or clouds, are heterogeneous 
hardware and software environments. 
Automation will need to be able 
to deploy, monitor, and repair 
applications and sessions using 
them on a wide range of clouds 
simultaneously. Edge automation 
should be independent of the 
underlying cloud providing multi-cloud 
mechanisms.

Location-aware vs. location-
dependent: One goal of edge 
computing is to provide resources 
at specific locations close to the 
consumers. However, said consumers 

Figure 6 3GPP network slice lifecycle management [23].
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can and will move and are probably 
not interested in accessing these 
specific locations but resources with 
defined QoS. Edge automation should 
be location-aware where location 
defines the automation target yet not 
be location-dependent.

Mobility management and application-
dependency: a core property of a 
mobile network involves facilitating 
consumer and, to a certain degree, 
resource mobility. A common scenario 
is a mobile UE connected (via “long” 
tunnels or slices) to relatively static 
and aggregated endpoints (e.g., 
packet gateways in the Core at a few 
central locations). At the edge, the 
connections are “short”, endpoints are 
no longer aggregated centrally, and 
the nature of end points changes from 
some sort of gateway to applications. 
Edge automation must cope with 
application dependency while 
supporting consumer and resource 
mobility, for example, a hand-over of 
an application between different edge 
zones to follow a connected UE.

Fine-grained time-sensitivity: one 
reason to use edge computing is to 
support time-sensitive services with 
QoS impossible to achieve otherwise. 
There are many time-sensitive 
properties, low latency being one of 
them. Consumers will define their 

Figure 7 Edge automation and control framework.

time requirements and the edge 
will have to cope with very fine-
grained requests. Edge automation 
should create, maintain, and remove 
resources based on many specific 
time requirements rather than a 
few generic service classes or QoS 
parameters.

1.5 Architecture Direction 
The telecommunications industry 
is amid several transformational 
shifts, including the adoption of 5G 
technology as well as momentum in 
the marketplace from closed, single 
vendor RAN to ORAN—standardized, 
software-defined interfaces that are 
open and interoperable. While these 
are first steps towards introducing 
automation and control into the 
5G network, further (architectural) 
enhancements must be introduced to 
achieve automation at the 5G edge. 
To this end, an indicative end-to-end 
architecture is shown in Figure 7 that 
encompasses an edge automation 
and control framework, service 
management and orchestration layer, 
intelligent edge applications layer and 
a distributed edge infrastructure layer. 

An Edge Automation and Control 
framework is envisioned to include 
various components and to support 
standardized networks and entities, 

e.g., 5G NR, private 5G, Open RAN 
RIC etc. Such a framework should 
integrate a wider architecture aiming 
for end-to-end observability, control, 
and optimization of Open RAN and the 
5G edge ultimately extending towards 
transport and core. Note that Open 
RAN is one of the many potential 
implementation baselines for an edge 
automation framework. 

An edge automation and control 
framework may include: 

• An Open RAN RIC (intelligent 
RAN control),

• An Intelligent Access Controller 
(multi-mode access support, 
access control),

• An Intelligent Core Controller 
(control at the core and transport 
network e.g., SD-WAN),

• An Intelligent Edge Controller 
(main coordination and 
optimization function),

• Edge Intelligence (for recursive 
monitoring, intelligent decision-
making, automation, and 
optimization)

• A Time-sensitive communications 
data plane that can be 
dynamically programmed as 
driven by application needs
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Intelligent Edge Controllers with Time-
Sensitive Applications

The introduction of edge controllers 
for the end-to-end control and 
automation to support various 
emerging application including time-
sensitive applications, are expected to 
provide the required degree of control, 
management, and orchestration for 
the 5G edge automation. However, 
such a framework will have its own 
challenges. Two main challenges in 
this context are security and a new 
marketplace.

Security: Through enhanced visibility 
of key interfaces over open interfaces, 
AI/ML powered tools provide 
automated security analytics. As 
Open RAN evolves to incorporate new 
capabilities such as real-time and 
non-real-time RIC that use pre-trained 
AI models, new threats emerge related 
to algorithmic conflicts, adversarial 
attacks, and data exfiltration. Open 
RAN is evolving towards providing real-
time security at the edge. Traditional 
implementations might take additional 
time and manual diagnosis to curb 
such threats possibly leaving the 
network exposed. 

O-RAN, with its virtualization, 
disaggregation, automation, and 
intelligence, is expected to be a 
complementary part of 5G’s broader 
progression to greater security:

• Open interfaces ensure 
interoperability of protocols and 
security features 

• Disaggregation establishes 
diversity of supply chain 

• Cloud-native applications provide 
isolation 

An Open RAN architecture specified 
by the O-RAN Alliance, builds upon 
3GPP RAN specifications with 
additional interfaces and functions. 
However, these additional interfaces 
and functions introduce additional 
security risks due to the expanded 
attack surface. Internal and external 
attacks can exploit vulnerabilities in 
the network architecture and cloud 
infrastructure, while 5G use cases 
have decreased risk tolerance. 

Marketplace: The introduction of 
intelligent edge applications opens 

a new and exciting marketplace of 
applications. Much like the plethora 
of apps that are available in our 
cell phones today, the Open RAN 
marketplace will provide a rich 
ecosystem for innovators to develop 
various RAN optimization applications. 
Diverse types of intelligent edge 
applications (rApps and xApps) can 
be developed to optimize both at a 
macro cell level or surgically at a per 
UE level. Non-RT RIC applications 
(rApps) operate at a time granularity 
of 10s of seconds while near-real-time 
RIC applications (xApps) operate at a 
much faster timescale in the order of 
10s of milliseconds.

Implementing Open RAN technologies 
could spur innovation and potentially 
provide additional benefits of 
increased flexibility, agility, and 
resilience in the RAN. Decoupling the 
hardware and software of the RAN not 
only creates possible opportunities 
for new businesses, both small and 
large, to enter the market, but it also 
could decrease the probability of the 
vendor lock-in that can occur. The 
modular nature also encourages 
the development of “best-of-breed” 
solutions due to increased vendor 
competition. Finally, a disaggregated 
and open ecosystem could provide 
resilience and agility benefits. 

1.6 System 
Recommendations for ML-
driven Automation 
The capabilities introduced by 
5G make it possible to take ML 
applications to the next level, providing 
a better user experience and open 
new opportunities, for instance in 
healthcare, security, and finance 
applications. However, making those 
advances means that the underlying 
system must support unprecedented 
amounts of data being constantly 
collected and processed in a timely 
manner as well as large amounts 
of computation must be executed 
promptly on the edge devices or on 
edge zones (i.e., premise, access, or 
metro).

To achieve these goals, instead of 
adhering to the traditional worst-
case planning, even the most basic 

functionalities should be amenable 
to automation and adapt to evolving 
situations. To achieve reliable systems 
and responsible resource consumption 
and scalability of those systems, we 
need ML solutions to both automate 
the design and provide fundamental 
support for growing ML applications.

1.6.1 ML for Systems 
Machine Learning for systems explores 
how we can leverage machine learning 
tools and advances to improve 
systems. Several approaches can 
help to automate and manage future 
networks, including advanced 5G 
networks. 

1.6.1.1  Smart Edge Configuration 

Every edge device has its own 
capabilities and resource constraints. 
For example, a cellphone is battery 
powered (unless connected to a power 
source), whereas a smart refrigerator 
is connected to a constant power 
supply but may have weaker hardware 
configuration and capabilities due 
to profitability considerations. Many 
such devices may participate in 
joint data collection and processing 
tasks and even communicate among 
themselves. Each such device should 
have automation capabilities to 
coordinate an expectations negotiation 
for different tasks and assess its 
limitations and ability to execute a 
given application or task.

For example, a server or an application 
coordinator may produce sample 
application benchmarks for each 
device to execute. Then, according to 
collected benchmark results, an ML 
model can be used to determine the 
suitable hardware configuration and 
functionality for each participating 
device. This may lead to an automatic 
configuration of devices, better use 
of their resources, and better system 
utilization.

1.6.1.2  Smart Edge Monitoring 

There are several challenges involving 
edge device monitoring, statistics 
collection, and different fault and 
anomaly detection needs.

Statistics collection: When considering 
each device separately, storage 
and communication are of major 
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concern. For instance, a device can 
have automation capabilities to 
adjust the resolution of its samples 
(e.g., images), or to recognize what 
information is more critical and 
time-sensitive and therefore should 
be immediately dispatched (e.g., 
healthcare application).

Anomaly Detection: Automated 
anomaly detection includes a 
wide range of applications such as 
finance, surveillance, health care, 
intrusion detection, fault detection in 
safety-critical systems, and medical 
diagnosis. For example, anomalies 
in network traffic could mean that a 
hacked device is sending out sensitive 
data to an unauthorized destination; 
anomalies in a credit card transaction 
could indicate credit card or identity 
theft; and anomaly readings from 
various sensors could signify a faulty 
behavior in hardware or a software 
component. 

Edge devices are usually resource-
constrained in terms of compute, 
communication, and memory, while 
anomaly detection applications 
usually require detection of anomalies 
as fast as possible. Therefore, it is 
of increasing interest to develop, 
support and deploy resource-efficient 
anomaly detection ML models on such 
edge devices. 5G can offer improved 
cross-device connectivity which can 
be leveraged to improve anomaly 
detection performance, for instance 
by employing efficient distributed data 
collection.

Predict Infrastructure Failure: 
Previously, failed infrastructure meant 
that edge devices might have lost 
connectivity and application accesses 
for the failure or takeover duration, 
introducing inconvenience and worse. 
However, considering the extent of 
future uses and applications, such 
an infrastructure failure can result 
in disastrous scenarios, leading to 
a huge financial damage (e.g., an 
automatic order to sell or buy stocks) 
and even a loss of life (e.g., medical 
and life-supporting applications). 
Keeping available backups ready to 
take over may prevent such scenarios. 
A complimentary and scalable solution 
is the ability to predict infrastructure 
failure. A device or neighboring 

devices’ ability to predict upcoming 
malfunctioning relies on lessons 
learned from the past. Automating 
such failure predictions is a big step 
toward system reliability on a larger 
scale with life-supporting and critical 
applications.

Predict Network Overload: Network 
overload is a known problem. For 
example, an audience of tens and 
even hundreds of thousands of people 
may lose connectivity at a sports 
event. Predicting such overloads at 
specific times and locations, either by 
the network infrastructure or the edge 
devices, can be used to issue notices 
alarming users from the possibility of 
such an event. It may be necessary for 
some users and application to take 
this possibility into account and take 
measures accordingly.

1.6.2 Systems for ML 
Running ML applications over edge 
devices is highly challenging in terms 
of resource consumption. With the 
increase of ML applications’ demands 
and usages, available amounts of 
data, and growth in the number of 
users, these challenges will only 
increase. The ability to meet these 
challenges largely relies on how we 
operate and perform communication 
and computation for ML applications.

Systems for ML explores how the 
system design itself can improve ML 
performance and resource usage to 
performance tradeoffs by exploiting 
domain knowledge. Automation of 
systems to offer the appropriate tools 
and configurations to ML applications 
is an essential step towards better ML 
practices.

1.6.2.1  Support for ML 
Applications 

ML applications often require a lot 
of communication, computation, 
and data collection. For example, 
in federated learning, participating 
devices perform potentially 
computationally-extensive operations 
on their local data, exchange 
parameter updates, and must be 
concerned with the privacy of their 
data.

Exposing suitable system APIs to such 

ML applications can off-load many 
tasks and enable better resource 
usage and scalability. For example, 
a system may expose interfaces 
that will allow for efficient in-network 
aggregation, privacy (e.g., differential 
privacy and secure aggregation), 
and even encoding, decoding, and 
down-sampling capabilities when an 
application can indicate that lossy 
information suffices.

1.6.2.2 Support for Distributed 
Data Collection 

Collecting data from billions of devices 
and for different applications and use-
cases is a major challenge. Having a 
human expert to fine-tune this process 
for each use case is impractical. 
A desirable design goal is to have 
a system API that supports data 
collection in a way that allows users 
and applications to specify which data 
is relevant and collect only relevant 
data. For example, an application can 
indicate through an API metrics by 
which the system can perform in-
network data filtering and aggregation 
during the collection process. 

Another step in automated monitoring 
and statistics collection is the 
coordination of such activities over 
a set of devices. For example, 
coordinated monitoring and statistics 
collection of several devices may 
result in better information and 
resource usage. Likewise, eliminating 
redundancy in data collection process 
executed by many devices can improve 
both bandwidth and computational 
resources.
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2. 5G Edge Optimization, 
Intelligence, and Analytics 

The world of computing and communication has been going through a 
fundamental paradigm shift in recent years. Moore’s Law has increased 
both computing and communication capacity of network nodes and devices 
tremendously. The end user/edge devices are becoming more and more 
compute-intensive to run sophisticated optimization approaches and/or AI/
ML workloads to drive actionable insights at the edge. At the same time many 
new time-sensitive, mission critical services require distributed, collaborative 
processing at near edge users as opposed to centralized/cloud-based 
processing. 

The combination of 5G connectivity and AI/ML computing capability at the edge 
enables more intelligent applications for the network edge nodes and devices 
as well. Devices with limited processing power can leverage 5G network edge 
node resources or other more capable devices nearby to gain intelligence. 
Network edge nodes can also leverage devices to collect real-time data from 
devices’ sensors and create a joint perception of the environment. They can also 
collaborate in sharing sensor data, AI/ML processing, and coordinate actions 
thus enable collaborative intelligence.

This shift creates new business opportunities for 5G edge computing and 
communications technologies as the ability to run AI/ML algorithms on the 
edge infrastructure that are connected to and can serve edge users. Such edge 
infrastructures are lucrative for circumventing bandwidth, latency, and cost 
concerns of cloud computing with the global AI edge chipset revenue forecast to 
grow to $51.9B by 2025 [24].

2.1 Background 
The 5G NR air interface is vastly improved to address the requirements of 
various emerging use cases. To guarantee QoS requirements for such use 
cases, other network architectural concepts have been introduced that support 
management and orchestration, optimization, and AI/ML-based analytics. A 
new split RAN architecture and edge computing are two significant architectural 
changes in 5G networks to reduce the overall latency and guarantee QoS. 

With the migration to cloud-based 5G networks, there is a need for a 
collaborative and intelligent approach to optimize the fragmented ecosystem 
of edge computing. While mobile network operators can open up their network 
as a distributed cloud to non-telco workloads, enterprises need to optimize 
their applications for the new distributed architecture, which provides an 
unprecedented opportunity for distribution and processing of the massive 
amounts of data and its analytics at the edge. 5G networks allow us to fully 
exploit edge computing by moving the data collection, compute, and analytics 
closer to the end points, where data is generated and consumed, rather than 
sending the data to and from servers in cloud data centers thus essentially 
leading to significant reduction in end-to-end latency in data analytics and 
delivery , 5G and beyond edge networks inherently have the intelligence needed 
for smartly moving, storing, and processing data on the fly. 

With both massive data and the processing power with AI/ML capabilities at 
5G edge nodes, including mobile edge computing nodes and mobile nodes, 
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distributed learning [25] and collaborative intelligence [26] will become possible 
and be able to support real-time intelligence and collaboration. Edge nodes can 
work together to share sensor data from each other to obtain joint perception 
with collaborative AI/ML in a dynamic environment and to act together with 
group decisions for the improvement of efficiency, productivity, and safety 
for various 5G edge applications like intelligent transportation system, smart 
factory, smart energy, and smart homes. 

2.2 State of the Art and Industry Landscape 
5G calls for a new level of flexibility in architecting, scaling, and deploying 
telecom networks. Cloud technology offers new innovative alternatives for such 
RAN deployments complementing existing proven purpose-built solutions. 
Cloud RAN refers to realizing RAN functions over a generic computing platform 
instead of a purpose-built hardware platform and managing the RAN application 
virtualization using cloud-native principles. Cloudification of the RAN begins with 
running selected 5G RAN network functions in containers through Commercial 
Off-The-Shelf (COTS) hardware platforms. It starts with the control plane and 
user plane in the CU and continues with latency-sensitive radio processing 
functions in the DU. By pushing distributed units to the edge, mobile networks 
provide low latency services and a pool of processing and other computing 
resources to support mobile user processor off-loading use cases [27].

2.2.1 The Industrial Cloud Ecosystem
The combination of different sizes of cloud data centers, namely edge zones, at 
global, national, local/regional, and potentially access locations are integrated 
into the network and operated by a central orchestration and management 
system. The exact specification of the infrastructure on different sites may 
depend on the use cases and applications onboarded. In addition, there can 
be several infrastructure providers on the same site and these distributed 
computing resources, including MEC nodes and edge devices like the Roadside 
Unit (RSU) which can provide AI/ML services [28] or enable collaborative 
intelligence.

Many companies participate in the ecosystem, from hardware vendors, platform 
companies to applications developers, System Integrator (SI) companies, and 
Cloud Service Providers (CSPs). Two other key players in the ecosystem are the 
Hyperscale Cloud Providers (HCPs) and Operational Technology (OT) vendors.

Hyperscale Cloud Providers, such as AWS, Microsoft Azure, Google, and AliCloud 
all have a core business to provide cloud infrastructure and platforms. They 
own application ecosystems with thousands of contributing developers and 
can serve multiple enterprises in several sectors globally. HCPs are keen to be 
ecosystem drivers for edge computing. As a part of this approach, HCPs start 
offering on-premises compute, storage, database, and other services run locally 
on dedicated platforms provided to the customers at the edge. This approach is 
ideal for workloads and applications that require low latency and access to on-
premises systems, enabling edge workloads to extend their reach to the cloud as 
needed.

OT vendors have IoT platforms and applications, supported by edge computing 
components. Some examples of these companies include Siemens, 
General Electric, BMW, and ABB. They have strong enterprise relationships, 
especially in the manufacturing sector. Companies looking to do an intelligent 
manufacturing deployment are likely to partner with an OT vendor to a certain 
extent. OT vendors establish relationships with HCPs for global deployments 
of their solutions, access to the application development ecosystem, and an 
environment to create and deploy their applications.

SI companies have a wide range of capabilities to address enterprise pain 
points related to solution implementation and integrating offerings from 
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different ecosystem companies. SI 
companies can be both global and 
local and are likely to be present in 
most solution implementations in one 
way or another. Apart from specialized 
SI companies, other companies 
can also take an SI role in solution 
implementation, for example, OT 
vendors or HCPs. 

Figure 8 provides a better look at the 
overall cloud and edge ecosystem, as 
it pertains to 5G applications.

2.2.2 Centralized, 
Decentralized, and Hybrid 
Network at Edge
Edge intelligence requires non-
traditional hierarchy, a hybrid 
and distributed network for edge 
devices. The introduction of 5G 
NR sidelink [29] and Integrated 
Access and Backhaul (IAB) [30] in 
3GPP standards has enabled both 
direct device-to-device and multi-
hop communication at the edge 
of networks. They enable a hybrid 
network topology of both centralized 
and distributed (mesh) networks at 
the edge, allowing the edge nodes to 
communicate without going through 
the hierarchy of the core network. 
Such heterogeneous connections 
and networking technology can thus 
enable low latency (at milli-second 

Figure 8 Distributed edge to meet the need of 5G applications.

level), high reliability (up to 99.999%) 
and high throughput (from 1Gbps up 
to 10Gbps) at the edge, which can 
further enable edge applications to 
provide localized, real-time, safety 
related AI/ML services. 

2.2.3 Data Collection and 
Analysis at Edge
One key benefit of the edge 
intelligence is the accessibility of 
real-time, local data that is captured 
by nearby devices or sensors 
connected to the edge or mobile edge 
computing node. 3GPP has defined 
data collection features like [31]. In 
the O-RAN architecture, data can be 
collected at the edge nodes including 
base station, mobile edge computing 
node, and user devices, to support 
near real-time network analysis 
for RAN optimization. Similarly, 
other sensor data like video, audio, 
temperature, and others could be 
collected by various edge nodes and 
can be used for various edge AI/ML 
applications to help provide near-real 
time analysis and decision making, to 
enforce safety, security or efficiency 
in verticals such as intelligent 
transportation systems, smart factory 
cases, and others.

2.2.4 RAN Intelligence 
Controllers
In a typical RAN, there are millions of 
decisions taken every second about 
which user to serve over the radio 
interface and how. Each of these 
decisions contributes to the service 
quality and the prioritization among 
users and services in case of conflicts. 
Traditionally, these micro-decisions 
are governed by a combination of 
supplier design choices and network 
configuration parameter settings done 
by the service provider. In the relatively 
simple 2G systems, the effect of a 
configuration change was mainly 
possible to understand. In today’s 
more sophisticated multi-service 5G 
networks, it is virtually impossible, 
in a cost-efficient manner, to predict 
the effect a given set of configuration 
changes will have on the end-user 
services.

However, the intent of the RAN 
remains the same: to offer 
connectivity to the service providers’ 
customers in a profitable way. The 
idea of intent-based management for 
RAN is to evolve the RAN configuration 
from setting technical parameters and 
instead allowing service providers to 
specify the connectivity service itself, 
prioritizing across users and services 
based on business intent and devices 
capabilities. 
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The non-real-time RIC is a concept 
developed by the O-RAN Alliance to 
realize intent-based management, 
built on principles of automation and 
AI and ML. The non-real-time RIC 
brings genuinely novel capabilities to 
the system and addresses use cases 
that were previously out of reach, 
with the ability to set policies per user 
and data enrichment information 
for RAN optimization. Intent-based 
management based on non-real-time 
RIC can be applied to Cloud RAN 
to enable a high degree of network 
programmability and can equally well 
be applied to purpose-built RAN to 
enable a wide variety of automation 
and optimization use-cases that are 
not possible today. This approach can 
be extended to the resources at the 
edge and combined with computing 
resource allocation to the end-users.

The non-real-time RIC is part of 
the Service Management and 
Orchestration system (SMO) and 
consists of a platform plus a set of 
microservices (named rAPPs by O-RAN 
Alliance) representing the network 
intelligence. The system’s design is 
based on the following principles:

• Access to information: There is a 
wealth of contextual information 
– not available in the RAN – 
with the potential to improve 
radio–resource management, 
RAN performance, and user 
experience. This includes 
application-level information, 
cross-domain information, UE 
positions, mobility trajectories, 
UE computation capabilities and 
external information. 

• Dynamic optimization: 
Traditionally, management 
and orchestration have been 
performed on the timescale of 
hours. With automation and 
improved interfaces, the non-
real-time RIC can optimize the 
RAN on a time scale down to half 
a second.

• User-level service assurance: 
Optimizing the RAN on a user 
level (in addition to the per-node 
level) enables the non-real-time 
RIC to address a broad set of 
use-cases that were previously 
out of reach. 

• AI/ML over-engineered 
programs: The intelligence in 
RAN control is gradually moving 
to AI/ML-based software, and the 
non-real-time RIC is designed for 
AI/ML from day one. 

• Innovation for openness: It is 
possible to build an open eco-
system of intelligent controller 
software where applications 
(rAPPs) feed each other with data 
and insights.

2.3 Envisioned Features and 
Key Technologies 
Multiple international organizations 
have defined the expected 
requirements, features, and key 
technologies in the context of 5G edge. 
ESTI has published a specification [32] 
on an MEC framework and a reference 
architecture, as well as many other 
specifications as summarized in the 
MEC in their 5G Network white paper 
[33]. 3GPP has defined even more key 
enabling technologies of 5G to support 
MEC [34]. In addition, concepts 
such as Explainable AI, Named 
Data Network, innovative transport 
layer protocol, joint optimization of 
communication and computing, and 
distributed machine learning have 
been studied by various academic 
and industry organizations. These 
new features and key technologies will 
play an important role in future edge 
optimization, intelligence, and data 
analytics. The following sections will 
give an overview of some which may 
be growing in importance. 

2.3.1 Explainable AI 
AI has achieved growing momentum 
in its application in many fields to deal 
with increased complexity, scalability, 
and automation, which also permeates 
digital networks today. A rapid surge 
in the complexity and sophistication 
of AI-powered systems has evolved to 
such an extent that humans do not 
understand the complex mechanisms 
by which AI systems work or how they 
make certain decisions — something 
that is particularly a challenge when 
AI-based systems compute outputs 
that are unexpected or seemingly 
unpredictable. This especially 
holds for opaque decision-making 
systems, such as those using Deep 

Neural Networks (DNNs), which are 
considered complex black box models. 

The inability for humans to see inside 
black boxes can result in AI adoption 
(and even its further development) 
being hindered, which is why growing 
levels of autonomy, complexity, and 
ambiguity in AI methods continues to 
increase the need for interpretability, 
transparency, understandability, and 
explainability of AI products/outputs 
(such as predictions, decisions, 
actions, and recommendations). 
These elements are crucial to ensuring 
that humans can understand and 
— consequently — trust AI-based 
systems. Explainable AI (XAI) refers to 
methods and techniques that produce 
accurate, explainable models of why 
and how an AI algorithm arrives at a 
specific decision so that AI solution 
results can be understood by humans.

Without explanations behind an AI 
model’s internal functionalities and 
its decisions, there is a risk that 
the model would not be considered 
trustworthy or legitimate. XAI provides 
the needed understandability and 
transparency to enable greater trust 
toward AI- based solutions. Thus, XAI is 
acknowledged as a crucial feature for 
the practical deployment of AI models 
in systems and, more importantly, for 
satisfying the fundamental rights of 
AI users related to AI-based decision-
making (according to European 
Commission ethical guidelines for 
trustworthy AI). Standardization bodies 
such as the ETSI and the Institute of 
Electrical and Electronics Engineers 
(IEEE) also emphasize the importance 
of XAI where AI models are deployed, 
indicating XAI’s growing importance 
in the future. AI deployers and 
developers must comply with these 
ethical guidelines and regulations 
to ensure their AI solutions are 
explainable and trustable.

However, there are significant 
challenges in developing explainability 
methods. One of them is the trade-
off between attaining the simplicity 
of algorithm transparency and 
impacting the high-performing nature 
of complex but opaque models (when 
one increases the transparency 
aspect, privacy and the security of 
sensitive data come into question). 
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Yet another challenge is to identify 
the correct information for the user, 
where different levels of knowledge 
will come into play. Beyond selecting 
the level of knowledge retained by the 
user, generating a concise (simple but 
meaningful) explanation also becomes 
a challenge. Researchers attempt to 
integrate knowledge-based systems so 
that the explanation becomes relevant 
to its application’s context [35].

XAI helps deliver trust by supporting 
with the following properties:

• Trustworthiness, to attain the 
trust of humans on the AI model 
by explaining the characteristics 
and rationale of the AI output

• Transferability, where the 
explanation of an AI model 
allows a better understanding 
of it so that it can be transferred 
to another problem or domain/
application properly

• Informativeness, relating to 
informing a user regarding 
how an AI model works to 
avoid misconception (this is 
also related to human agency 
and autonomy, which ensures 
humans understand AI outcomes 
and can take intervening actions 
on that basis)

Figure 9 Overview of XAI methods and their link to data, ML, and MR

• Confidence, which is achieved 
through having a model that is 
robust, stable, and explainable 
to support human confidence in 
deploying an AI model

• Privacy awareness, ensuring 
that the AI and XAI methods do 
not expose private data (which 
can be done through data 
anonymization)

• Actionability, with XAI providing 
indications regarding how a user 
could change an action to yield 
a different outcome in addition 
to providing the rationale for an 
outcome

• Tailored (user-focused) 
explanations, allowing humans 
— as AI system users of different 
knowledge backgrounds — to 
understand the behavior and 
predictions made by AI-based 
systems through tailored 
descriptions based on their roles, 
goals, and preferences

It is vital to incorporate interpretability 
and explainability at different levels 
of complex AI techniques. The XAI 
framework is tightly linked with 
providing explanations for both 
different AI techniques (ML and 
Machine Reasoning (MR) techniques) 

and the environment through properly 
defined interfaces.

The main components of such a 
framework center on explanations, 
explainability for data, explainability 
for ML, and explainability for MR 
(see purple parts of Figure 9). The 
distinctive approach that we are taking 
is to apply explainability to ML and MR 
and the interplay between ML and MR 
by feeding the output of an ML model 
(both its predictions and explanations) 
into our MR techniques and applying 
it XAI to generate explanations. This 
proactive placement provides the right 
AI trustworthiness early on rather than 
relying on reactive fixes. Furthermore, 
this framework allows the integration 
of new XAI algorithms into the 
respective explainability components. 
In the future, newly developed XAI 
techniques for ML/MR can be easily 
deployed within the explainability for 
ML/MR components.

2.3.2 Multi-Access for 
 the 5G Edge 
Multi-access traffic management at 
the edge is vital for addressing ever 
increasing performance requirements 
for current and future applications. 
However, it is not possible to achieve, 
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for example, the maximum data rate and the highest reliability at the same time. 
Hence, the multi-access challenge is to manage data traffic across all available 
access networks and meet diverse application requirements in coverage, rate, 
latency, and reliability. To address this challenge, the following key questions 
need to be answered:

• How to acquire individual application requirements?
• How to support multi-access traffic management?
• What measurements are needed for making smart decisions?

Applications may have different QoS requirements, and Traffic Management 
(TM) service [36] recently introduced in the ETSI MEC reference architecture 
[37] allows applications to get informed of various capabilities and multi-access 
network connection information, and to provide requirements such as delay, 
throughput, and loss for influencing traffic management operations at the edge.

Multi-access traffic management requires a set of new protocols between client 
and network. Recently, multiple access management service [38] has been 
proposed. In parallel, 3GPP has developed the access traffic steering, switching, 
and splitting [39] feature. Both provide mechanisms for flexible selection of 
network paths, and leverage network intelligence and policies to dynamically 
adapt traffic distribution across selected paths under changing network/link 
conditions. Figure 10 shows the multi-access protocol stack which consists of 
the following two sublayers:

• Convergence sublayer: This layer performs multi-access specific tasks 
such as access (path) selection, multi-link (path) aggregation, splitting/
re-ordering, lossless switching, keep-alive, and probing. Generic Routing 
Encapsulation (GRE) [40] may be used to encode additional control 
information, e.g., sequence number, at this sub-layer.

• Adaptation sublayer: This layer performs functions to handle tunneling, 
network layer security, and Network Address Translation (NAT). Existing 
protocols, including User Datagram Protocol (UDP) and Internet Protocol 
Security (IPSec), can be re-used. 

To take full advantage of multi-access connectivity, we should distribute traffic 
load intelligently across available access links in a manner that improves 
user experience with efficient radio resource usage. To achieve this goal, 
measurements that reflect the connectivity conditions of different access 
networks should be incorporated while determining multi-access traffic 
distribution. For example, the end-to-end packet delay measurements can be 
used to identify which access provides better latency performance. 

Figure 10 Multi-Access Protocol Stack.
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When serving QoS flows requiring 
high reliability, packet drop ratio 
measurements give a good indication 
of whether redundant transmission 
over multiple access networks is 
required. In addition to end-to-end 
packet statistics, RAN measurements 
can indicate network quality 
degradation caused by deteriorating 
radio link quality or access network 
congestion, in a timely fashion. 
Moreover, ML/AI based algorithms 
may be developed to automatically 
configure and manage data traffic 
across all the available networks and 
improve end-user experiences.

Using these building blocks, we can 
unleash the full potential of multi-
access/multi-connectivity at the 
edge to address the performance 
requirements of applications now and 
in the future.

2.3.3 Situational Network at 
the Edge 
The emerging architecture being 
designed to accommodate 5G 
applications is known as Multi-Access 
Edge Computing (MEC) and several 
challenges must be solved before it 
can become a mainstream reality. 

First, devices that might need edge 
computing must be recognized at the 
beginning of a session when user 
plane resources are being established. 
A local uplink classifier or branching 
point or packet session anchor 
must be allocated for these devices. 
Recognition of such devices may not 
be straightforward and could present 
an interesting machine learning 
challenge in and of itself. Second, 
protocols and techniques must be 
created for devices to discover any 
edge services available to them, 
including discovery of peer devices 
that may also be attached to the 
network as clients. Third, mobility 
management must be developed for 
the unique edge environment that 
preserves the IP address associated 
with a given session when necessary 
but that also recognizes that IP 
addresses may need to be reassigned 
under some circumstances. Finally, 
the interactions between edge 
computing and slicing must be 
dealt with. The concept of multiple 

Network Slice Instances (NSIs), each 
implementing the same slice but for 
different geographic locations, will be 
important here.

2.3.4 Situation-aware 
Transport Layer Protocol
Transport layer protocols such 
as Transmission Control Protocol 
(TCP) rely on the end host to handle 
congestion control, flow control 
and end-to-end reliability with the 
underlying assumption of ‘in-order 
byte’ delivery. However, dynamic, 
self-organized situational 5G networks 
at the edge, which may be running 
diverse applications (from end users 
to edge) in a collaborative, multi-
hop fashion with involvement of 
multiple edge infrastructures, may 
not necessarily stick to the in-order 
byte delivery paradigm as the network 
topology itself may be dynamically 
changing [41], [42]. 

On the other hand, TCP relies on its 
reactive congestion control which 
kicks in only after the packet has 
traversed full path from the source 
node to the destination and back to 
the source/host edge infrastructure. 
Such a reactive approach leads to 
delays. Furthermore, the traditional 
end-host networking-based approach 
may be prone to single point of failure 
(or attacks by external jammers or 
misbehavior by existing end-users/
subscribers of the network services) 
which may overload the networks, thus 
resulting in highly unreliable and latent 
networks at the edge. Thus, the added 
dynamics due to mobility, changing 
deployment and reconfiguring topology 
need to be taken into consideration 
while designing Transport Layer 
Protocols. 

To this end, there is an inherent 
need for design of a situation-aware 
transport protocol. Additionally, 
some awareness of the network 
can be brought into consideration 
while designing such Transport 
Layer Protocols. For instance, one 
such protocol may involve in-band, 
telemetry-based network awareness 
building at the transport layer by, for 
example, exposing the congestion-
related meta data. Additionally, 
this mechanism can be used in 

conjunction with the application 
awareness for building a stateful way 
of serving dynamic and situational-
aware network.

2.3.5 Joint Optimization of 
Communication and Computing 
With the proliferation of smart 
autonomous devices equipped 
with computing, communication, 
and storage, we are observing data 
explosion at the edge, generated 
from many new applications such as 
self-driving cars, AR/VR, panoramic 
telephony, holographic interaction, 
digital twins, etc. 5G edge computing 
is essentially bringing computing, 
intelligence, and communication 
together by providing a platform to 
process data close to source for 
these services, thereby reducing 
end-to-end latency and network traffic 
overhead. Both communication and 
edge computing resources, however, 
are limited, variable, and shared by 
several nodes in the vicinity running 
multiple applications with different 
performance requirements. 

The existing computing and 
communication layers have mostly 
been designed either in an isolated 
manner or via loose coupling with 
coarse-grained information sharing 
between the layers. The expectation 
with 5G is that it will increase both 
users and traffic by an order of 
magnitude [43]. For this reason, 
it is of paramount importance to 
jointly optimize the computing and 
communication process to help avoid 
underutilization and oversubscription 
of resources, while also significantly 
improving an application’s 
performance.

While the concept of computing-
communication co-optimization 
has been under consideration by 
academia and industry for a while, 
there are several challenges and 
directions that require closer attention 
to unleash the full potential of the joint 
optimization. First, a sound theoretical 
framework is indispensable to study 
the optimal joint resource allocation 
and resulting performance benefit 
for a given topology, Radio Access 
Technology (RAT), and computing 
resource (trusted peers, edge, cloud). 
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The framework should consider 
realistic modeling of communication 
and computing processes. 

Second, it is important to have an 
in-depth characterization study of 
the emerging edge workload and 
design a generic computing resource 
representation or abstraction to 
assess the computing storage 
requirements. While AI/ML is likely to 
be the dominant workload to enable 
edge intelligence, the computing and 
communication resource requirements 
for distributed training (e.g., federated 
learning) and inference are different. 
The network also needs to collect 
real-time status or telemetry on the 
usage of current computing and 
communication resources in an 
efficient manner. 

Third, the applications are increasingly 
becoming distributed and being 
implemented using cloud-native 
constructs. Additionally, applications 
can be decomposed dynamically 
(such as distributed inference [44]) 
where the real-time availability of 
computing and communication 
resources will help determine the right 
decomposition and placement/off-
loading of decomposed units. 

Fourth, the traditional design 
of scheduling computing and 
communication resources should 
be re-thought separately. Depending 
on the underlying hardware (e.g., 
Central Processing Unit (CPU), 
Graphical Processing Unit (GPU), 
Field Programmable Gate Arrays 
(FPGA), custom accelerators) used 
for computing and location (e.g., 
on-device or edge) of computing, 
the execution time may vary and put 
variable budget for the communication 
process to finish and meet end-to-
end application requirement. A joint 
computing-communication resource 
scheduler can leverage the real-time 
information [45], use AI/ML-based 
techniques to predict the arrival of 
input data for computing, and finally 
schedule both resources to keep the 
computing instances (e.g., container) 
up and running for processing data 
upon arrival. 

Last but not the least, academia 
and industry can work together 

to develop a realistic simulator/
emulator leveraging open-source edge 
computing frameworks (e.g., O-RAN, 
OpenNESS), AI/ML frameworks (e.g., 
Intel Distribution of OpenVINO), AI/
ML libraries, and real-world sensor 
datasets, which will be handy to 
validate the scalability of the aspects 
mentioned above and to generate key 
performance indicators. 

The joint optimization problem poses 
additional challenges and complexity 
in the case of edge-enabled 
applications such as control systems 
and robotic applications, where 
time-sensitive functions are offloaded 
from robots to the edge for compute 
acceleration, energy efficiency and for 
leveraging advanced AI capabilities. 
Guaranteed latency and determinism 
are critical for reliable control loop 
operation, especially while off-loading 
robotic functions (such as perception, 
planning, cognition) on the edge at 
scale. As a result, robotic control 
also needs to be jointly optimized 
along with communications and 
computing for reliable and efficient 
robotic operation. The state of the 
wireless network (latency, packet 
errors etc.) can be used to adapt 
robotic control to changing network 
conditions and available compute 
resources. Similarly, the state of 
robots and their environment can be 
used to dynamically adapt, provision 
and schedule compute resources 
(CPU cores, memory, etc.) and 
communications resources (packet 
scheduling, reliability) to the changing 
needs of robotic tasks.

2.3.6 Distributed  
Learning at Edge 
Distributed Learning [46] is one of 
the key enablers of edge intelligence 
that focuses on both training and 
inference with private and sensitive 
data at the edge, while avoiding the 
communication and latency cost of 
moving data for centralized processing 
in the datacenter. At the same time, 
it enables efficient use of compute 
capabilities available at the network 
edge or across a group of on-premises 
devices pooled together. Either of such 
available compute capabilities can 
thus host services by harnessing data 
close to the generation points and by 

leveraging disaggregated resources for 
compute and processing. 

Distributed learning approaches 
have evolved to address several 
issues of centralized cloud-based 
learning and are especially relevant 
to the problems at the 5G edge. 
In particular, distributed learning 
uses are inherently collaborative at 
typical endpoint or edge nodes which 
have only a partial view of the data 
required for learning. Collaboration in 
distributed learning may take different 
forms, such as in Federated Learning 
or Fully Distributed (Decentralized) 
Learning, [46]. In Federated Learning, 
the collaboration is managed with 
the help of a central coordinator that 
combines the learnings from nodes 
processing over their own data. 
Whereas in Fully Distributed Learning, 
there is no central coordinator, and 
nodes must collaborate in a peer-to-
peer manner. 

An additional advantage of distributed 
learning that is relevant to the 5G 
edge is the ability to adapt the 
learning models to the local situational 
context of the edge. For example, 
a 5G edge infrastructure for a 
factory implementation would have 
different requirements compared 
to a 5G edge network deployed to 
service urban residential clients. 
In this case, a distributed learning 
framework deployed to optimize the 
5G edge for functions such as traffic 
cell prediction, QoS management 
may need to be adapted differently 
for the two distinct deployments. 
Distributed ML allows for such model 
personalization to these distinct 
deployments, while still benefiting 
from learning common features 
through collaboration across all the 
nodes. With distributed learning local 
context or situational awareness can 
easily be included within the locally 
trained ML models to improve model 
accuracy for the local 5G edge context, 
when compared to a centrally trained 
model. 

Distributed learning has many 
challenges, particularly when applied 
over the 5G wireless edge [46]. We list 
some of the challenges below:
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• Statistical properties of data 
distribution: Different nodes 
at the 5G edge may have 
different data collection and 
storage abilities, as well as may 
only have a limited view of the 
overall data distribution. The 
diverse non-Independent and 
Identically Distributed (non-IID) 
data across clients can lead to 
slow convergence of ML model 
training slow down AI model 
training. 

• Heterogeneous Communication 
and Computational Costs: 
Devices on the wireless edge 
may have diverse computational 
and communications capabilities 
causing ‘straggler effects’ where 
poorly resourced clients on 
inefficient links relay their data 
infrequently or have high error 
rates. This leads to problems with 
model convergence, accuracy 
and fairness. 

• Scalability: Collaboration to learn 
very large models across a large 
number of users can lead to poor 
scaling.

• Privacy and Security: While 
distributed learning solutions 
avoid data sharing across 
devices, sharing of model 
parameters during learning can 
still leak data privacy. Studies 
have shown that it is possible to 
reconstruct user’s data through 
model inversion attacks.

• Security risks: Adversarial or 
malicious clients can corrupt 
model training by inserting false 
updates.

• Need for Self-Learning. Another 
challenge involves learning with 
limited data labeling, as access 
to annotated data with limited 
human support is one of the 
important challenges for the 
edge environment.

• Continuous learning: Constant 
new updates to the model may 
lead to a catastrophic forgetting 
of the model’s earlier learning. 

There are several promising 
techniques that are being explored to 
mitigate the above issues and may 
be found in  [46] [47] [48] [49]. We 
further note that ML computations 

are one of the key compute workloads 
that must be supported over the 
5G Edge. Hence, several compute-
communication co-optimization 
approaches discussed in earlier 
section are also relevant.

Currently there are various efforts to 
apply distributed learning solutions 
to applications in wireless networking 
[50] [49]. While there are recent 
efforts to introduce distributed 
learning techniques in both O-RAN 
and 3GPP, such efforts are nascent. 
Further work will be required to evolve 
5G edge architecture framework to 
support distributed learning as a 
critical workload, in the design of the 
next generation of wireless standards. 

2.4 Requirement Analysis 
The ecosystem for edge computing is 
fragmented and is quickly evolving. 
Technical solutions, interfaces, 
standards, and business models 
are not set. Several players must be 
involved to create end-to-end solutions 
and CSPs must carefully consider in 
which industries they can expand their 
offerings beyond connectivity.

The edge application ecosystem is 
driven by third-party applications 
outside of the telecom domain 
since solutions for new use cases 
require specific domain knowledge 
from industry players outside the 
telecom space. Edge infrastructure 
will therefore be accessible to third 
party application providers and 
developers and will host a multitude 
of applications, each with specific 
characteristics and needs.

The edge application environment 
enables mobile network operators to 
host non-telco workloads and open 
up the network as a distributed cloud 
resource. Enterprises can develop 
applications, deploy, and manage 
them flexibly via orchestration logic 
towards a ‘landing zone’ that accesses 
the distributed cloud infrastructure 
and leverages services exposed 
through APIs for consumption. Below 
is a brief overview of the functional 
components needed to create an edge 
computing solution [51].

Connectivity: Once the development 
environment is installed, connectivity 

will be configured by the application 
developer. The application running 
on the network edge may have 
connectivity requirements on 
bandwidth, throughput, mobility, and/
or latency within its components 
(for example, deployed on different 
hardware in a redundant setup) or with 
the external world, such as an internet 
connection, and the user equipment 
or the application session. Traffic 
routing for applications deployed 
further out in the network topology will 
need new mobile network solutions, 
such as distributed anchor, session 
breakout, and multiple sessions, and 
in some cases coordination between 
application server selection and usage 
of these mobile network solutions.

Application runtime execution 
environment: The very basic 
functionality that an edge computing 
service may provide is the runtime 
execution environment for VNF and 
non-telco workloads. An execution 
environment should be able to host 
applications and harmonize the 
requirements of the development 
communities. Many applications may 
use edge computing with different 
characteristics and functional 
requirements and require different 
platform components. Therefore, 
the operator provides a generic or 
multiple execution environments on 
the network edge that application 
developers can later customize.

Dynamic orchestration and 
management: Centralized 
orchestration is required to maintain 
consistency between possible traffic 
breakout points (where user plane 
gateway functionality is deployed) 
and the applications (which consume 
the traffic) in the network edge. 
The central orchestration and 
management functionalities need 
to be aware of the network topology 
and the available resources in the 
distributed cloud infrastructure. 
This orchestration layer will provide 
a harmonized single orchestration 
and management functionality over 
the different orchestration functions 
present. One of its purposes is to 
manage the platforms for non-telco 
workloads and VNFs according to 
service level agreements.
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Service exposure: Exposure is a crucial 
function of defining and developing 
new capabilities (APIs) and securely 
exposing them to non-telco workloads. 
The exposure server exposes the 
core capabilities available internally 
within the operator or to a partner 
with a commercial agreement. The 
exposed core capabilities add value to 
internal or external users, for example, 
connectivity, optimization, identity, 
security, data, and analytics.

Optimization: 5G and edge computing 
techniques provide several 
opportunities for smart network 
optimization, which can be theoretical, 
heuristic, or AI/ML-based. AI/ML 
techniques can 1) detect changes in 
demand, deterioration or drifting of 
SLAs, and inefficiencies or problems in 
the network, 2) diagnose such issues 
and identify the root cause, and 3) 
predict the response of the network to 
workload redistribution, deployment of 
new resources (e.g., network slices), 
configuration changes, and changes 
in management policies. The system 
can then select and implement the 
best response to changing conditions. 
Operators can use AI/ML techniques 
to gain useful and timely insight 
into their networks and optimize the 
management, operation, and/or 
orchestration of the network.

To realize these functionalities at the 
edge, there is paramount need for 
building aggregate yet distributed 
knowledge of the applications, 
situations, or workloads, across all the 
devices and entities involved in such 
movement, storage and/or processing 
of the data at the edge. Inherently, 
such knowledge building would require 
intelligence and judicious collaboration 
between all the network entities/
devices involved thus requiring the 
need for collaborative intelligence at 
the edge. Towards this end, a few key 
innovations in the areas of distributed 
learning, edge data analysis for driving 
scalable intelligence across multiple 
applications/workloads with bounded 
latency and guaranteed high reliability 
are needed. 

2.5 Architecture Direction 
To realize the 5G edge optimization, 
edge intelligence, and data analytics, 

architectural innovations are required 
to support the envisioned features 
and key technologies at 5G edge. 
First, at edge network level, traditional 
5G connectivity provides centralized, 
hierarchical architecture plus limited 
device-to-device connectivity support. 
Due to the high dynamic nature of 
the edge, it is needed to have highly 
flexible situational networks at the 
edge to connect the edge devices 
on the move to edge nodes, and 
connect the edge devices to each 
other, with or without centralized core 
networks support. Such situational 
network at the edge will allow 
sharing of data, sensor resource, 
and computing processing capability 
with low latency, high reliability, and 
high flexibility at the edge for various 
use cases. Secondly, to support the 
ever-increasing AI/ML computing 
needs and exponentially rise in AI/
ML workloads, distributed learning 
at the edge is needed to leverage 
the distributed data as well as AI/
ML processing capability of scattered 
edge network nodes and edge devices. 
This calls for a new distributed AI/
ML architecture to make optimal 
use of the available communication 
and computing resources while 
meeting the latency, security, and 
privacy requirements the 5G edge. 
The following sections discuss these 
architecture directions in detail.

2.5.1 Situational  
Network Architecture 
Edge computing provides an ideal 
platform to enable many critical 
and time-sensitive applications that 
require huge sensor capabilities 
and computing resources to 
process sensor data in near real-
time. Furthermore, intelligent data 
movement in a bandwidth-efficient 
manner and data utilization to make 
intelligent and timely decisions by 
running AI/ML algorithms at the edge 
must be accommodated at the edge. 
Situational awareness becomes 
critical here to take maximum 
advantage of potentially big data 
generated by sensor system utilizing 
compute resources available at edge 
in a time-critical way while keeping the 
bandwidth requirements manageable. 
An edge situation network enables 

intelligent collaboration among 
sensors, infrastructure nodes, and 
local compute nodes to process data 
closer to its source or point of service 
delivery.

Situational awareness can be acquired 
and maintained by mainly two types of 
systems: (i) a dynamic context-based 
discovery system, (ii) an Intelligence, 
Surveillance, and Reconnaissance 
(ISR) system. In dynamic context 
discovery, each node in situational 
edge network continuously acquires 
and maintains updated situation 
perception and network context 
in the proximity and network by 
frequently sharing information such 
as environment perception, Node’s 
own status and information (device 
type/role, location, orientation, 
etc.), perceived communication 
environment, compute capability, and 
sensing capability and configuration. 
Context discovery enables the edge 
situation network to form an intelligent 
collaborative group for efficient and 
intelligent optimization of sensing, 
caching, communication, and compute 
requirements in the network. Context 
information maintained by dynamic 
context discovery is then utilized to 
create a collaborative ISR system 
by pushing compute at the edge to 
realize data to decision concept in a 
time-sensitive way. ISR optimizes the 
utilization of sensor assets, compute 
resources and network resources 
to collect and fuse actionable 
information to provide reliable high-
quality situational information for 
assessing options, threats, and 
consequences of decisions. A 
situational aware model also needs to 
provide meaningful representations 
of actionable context and situational 
information so that network and users 
can readily consume the information 
in optimizing various operations and 
time-critical decision making.

2.5.2 Collaborative  
Edge Intelligence 
Edge intelligence, where intelligent 
compute devices are needed for 
moving, storing, and processing data 
closer to its source or point of service 
delivery is paramount for prediction, 
preparation, and response in an 
accelerated manner to deliver near 
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real-time services. Edge intelligence is 
paramount for real-time services and 
can accelerate AI/ML computations 
and workloads and offload centralized 
systems (e.g., cloud-based) that 
require higher bandwidths and 
lower latencies. Many applications 
leveraging AI/ML at the edge, however, 
are real-time and collaborative in 
nature where the form of collaboration 
can be fluid and application-and-
context dependent (e.g., local 
relevance). For example, multi-camera 
video analytics at smart intersections 
requires real-time communication 
with the smart AI cameras (that have 
the most relevant field of view) for 
sharing information such as location, 
frame, output of local processing and 
analytics.

To enable such near real-time 
application-and-context or situation-
aware collaboration among the 
intelligent edge devices and edge 
infrastructures, the underlying 5G 
networks needs to offer ultra-low 
latency and ultra-highly reliable 
communication. When these 
intelligent edge users are connected 
over a 5G network they can, together 
with the edge infrastructure, create 
a locally-available shared and 
distributed computing substrate that 
can be leveraged for time-sensitive 
collective computing or analytics 
tasks that may be comprised of a 
chain of AI/ML inferences. Such 
collaboration among intelligent nodes, 
if done intelligently and judiciously, 
can enable faster and more accurate 
decision-making processes for several 
high-stake applications such as traffic 
management, emergency response, 
drones, AR/VR, and autonomous 
systems comprising of connected 
autonomous robots, connected 
autonomous vehicles, among other 
systems. 

To this end, the need for building 
collective knowledge and sharing 
such knowledge by forming networks 
of collaborative intelligent nodes 
is paramount. Such collective 
intelligence with connected network 
of intelligent agents can be termed 
as Collaborative Edge Intelligence 
(CEI). The emergence of CEI can 
thus address diverse application 
requirements, for instance, real-time 

event detection, action classification, 
and collaborative decision making 
with a comprehensive application-
and-context or situation awareness of 
the edge environment in which such 
intelligent agents operate. 

The CEI provides a paradigm for 
structured collaboration among the 
intelligent edge agents so that the joint 
edge intelligence can be realized to 
attain an overall objective of delivering 
real-time response service for, say, 
data and analytics delivery to edge 
users. A fundamental enabler for CEI 
is intelligent networked computing to 
enable near real-time collaboration 
among heterogeneous computation 
capable edge servers and edge 
users. Hence, networked computing 
framework, algorithms, application-
aware communication-compute 
protocol built on top of ultra-low 
latency, guaranteed highly reliable 
(and always available) communication 
substrate, are fundamental enablers 
to realize CEI. 

For realizing such CEI, the diverse 
workloads across AI, media, and 
network, all together converge onto 
a common infrastructure which must 
deliver optimization, efficiency, and 
lower cost of ownership. With modern 
state-of-the-art robust packages 
and tools, telecommunications, 
semiconductors, and other ecosystem 
partners, would require the 
development of such converged edge 
applications with AI and 5G networking 
capabilities [52]. 

2.6 System 
Recommendations for ML-
driven Optimization 
The joint complexity of different 
edge devices, network components, 
communication protocols, 
mechanisms over the different layers 
and applications create a reality of 
very complex interactions and mutual 
influence. Manual optimization or 
optimization based on classical 
algorithms and approaches requires 
ever-growing domain expertise and 
human resources.

An ML-driven optimization is thus 
an appealing tool for such modern 
systems. This is the case for 5G, 

where low latency and high bandwidth 
networks allow for many edge devices 
to perform numerous communications 
over a constantly growing variety of 
applications. ML-driven optimization 
has the potential to adapt to 
evolving situations, conditions and 
heterogeneous environments as well 
as seeing through complex interaction 
between the various components of a 
system and optimize resource usage 
in a way that is rarely accessible, even 
with domain expertise. 

2.6.1 ML for Systems
There are many ways in which ML can 
be used to optimize 5G. Data delivery 
through the network may be required 
to be lossless (e.g., state-dependent 
encryption) or can sustain losses 
(e.g., audio or video streaming). For 
lossless communications, it is desired 
to have intelligent control over the 
way data is processed and paced 
through the network and, finally, 
delivered to its destination. For lossy 
communications, it may be smartly 
controlling the loss (e.g., lower the 
resolution of a video stream upon 
congestion).

2.6.1.1 ML for Congestion Control

Congestion control refers to a 
mechanism that determines the 
pace at which a sender injects new 
data into the network. The traditional 
congestion control mechanism, 
employed over TCP, relies on an 
intuitive mechanism and possibly 
with theoretical guarantees, such 
as “Additive Increase/Multiplicative 
Decrease” (AIMD), along with “slow 
start” and “congestion avoidance.” 
More recent mechanisms introduce 
rate-based methods (e.g., CUBIC), 
incorporate feedback from network 
switches (e.g., DCTCP), and even work 
cross layers (e.g., QUICK).

The quality of the congestion control 
is well-known to have a critical impact 
on both network throughput (e.g., due 
to packet losses and retransmissions) 
and latency. Thus, replacing such 
classic solutions with ML-driven 
algorithms holds the potential to lower 
latency and increase throughput by 
having the mechanisms themselves 
adapt to evolving network conditions 
and considering the traffic itself.
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2.6.1.2  ML for Data Streaming

For video, audio, and gaming 
applications, it is often the case 
that latency is of greater importance 
than throughput. Smart ML-driven 
data streaming aims to adjust the 
signal’s quality (e.g., video resolution) 
to achieve better client experience 
and resource usage. The advantage 
of ML-based methods over classical 
solutions is in resolving when 
and where to introduce the loss 
dynamically. For example, in audio 
and video conferences, ML can help 
in introducing loss in less important 
data items (e.g., silent moments or 
video fragments with homogeneous 
background). The network can use an 
ML API exposed by edge devices and 
network stations that can guide it to a 
better use of data loss.

2.6.1.3  ML for Caching

Caching is a well-known mechanism to 
improve data locality, resource usage, 
client experience and dramatically 
reducing latency and applications 
response time. Traditional cache 
management mechanisms rely on 
intuitive methods and often with 
theoretical guarantees (e.g., begin 
online competitive). Such methods 
include the Least-Recently-Used 
(LRU) policies, their approximations, 
and related more recent variants 
(e.g., Time-aware LRU (TLRU), Least-
Frequently-Used (LFU)). None of them 
is optimal for specific application and 
usage patterns. Moreover, all these 
policies are reactive because they rely 
only on previous data usage patterns.

ML-based cache management may 
enable two significant advances that 
can lead to improved resource usage. 
First, the policy can be made adaptive, 
evolving, and learning as data keeps 
arriving. Second, it may learn not 
only the data patterns but also take 
into consideration other events. For 
example, it may be absolutely time-
dependent and react to real-time 
events, such as parsing news sites 
and social media to predict what data 
will be consumed shortly and prepare 
for it. 

2.6.1.4 ML for Scheduling  
and Load balancing

Scheduling and load balancing are 
at the heart of the management of 
any distributed system. The main goal 
of these algorithms is to distribute 
and time the work in a way that 
optimizes some target metrics such 
as job completion times, tail latency, 
or maximum oversubscription of a 
processing or a network element.

It is often the case that these 
problems are computationally 
intractable, so modern solutions 
heavily rely on heuristics. Moreover, 
the metrics to optimize are usually 
not sufficiently simple and the 
systems include different participants 
with different optimization goals 
(e.g., throughput vs. delay-sensitive 
applications). Thus, even designing 
simple heuristics becomes highly 
challenging and requires domain 
expertise across many layers. ML-
based scheduling and load balancing 
solutions have the potential to capture 
complex structures and dependencies 
among metrics and participants and 
offer better performance and with 
limited domain expertise in each 
specific application.

2.6.2 Systems for ML
Different layers of the infrastructure 
(i.e., network and compute) offer 
different abstraction levels. Usually, 
it is the case that support of APIs 
exposed by the infrastructure can 
offer better resource efficiency. 
For example, while it is possible to 
implement lossless packet delivery 
in the application layer (e.g., over 
UDP) the efficiency and the usage of 
network resources is better managed 
where such delivery is supported by 
the network itself. Therefore, having 
the 5G infrastructure to support and 
expose APIs to ML application is a key 
step towards resource efficiency.

2.6.2.1  Systems Support for 
Caching ML Application Data

Data prefetch is a well-known 
technique to accelerate response 
times and increase resource efficiency 
both in hardware and software. For 
some applications the access patterns 
are evident and data pre-fetch works 

well, and for some others it may 
be more challenging. It is therefore 
of interest to expose API to the 
ML applications that will guide the 
prefetch mechanisms towards which 
data to prepare. Note that we have 
earlier discussed ML-based caching, 
however, we may be also interested 
in classic data structure with 
significantly faster processing speed 
that only exposes parameters to ML 
applications.

2.6.2.2  Systems Support for 
Federated Learning

In a federated learning procedure, 
many edge devices participate in a 
construction of an ML model. Usually, 
the process involves a coordinator and 
a parameter server (which may be a 
single entity, centralized or distributed) 
that coordinates a training procedure. 
At each training round, the coordinator 
picks a subset of available devices 
that in turn derive parameter updates 
based on their local data and send 
their updates to the parameter server. 
The parameter server processes all 
updates and computes updated model 
parameters. 

A main idea behind federated learning 
is to protect the privacy of participants’ 
data. Federated learning imposes 
several challenges in privacy as well as 
bandwidth and compute, especially for 
edge devices. 5G has the potential to 
take federated learning a step forward 
by providing support for better privacy 
(e.g., differential privacy, secure 
aggregation), support for in-network 
processing of updates (e.g., filtering, 
averaging, shared-randomness) and 
incremental computation alleviating 
the burden on the recourse-limited 
edge devices. 

2.6.2.3  Systems Support f 
or ML SLAs

Different ML models trained towards 
the same main optimization goal may 
differ in properties such as expected 
accuracy and inference time. To 
adhere to SLAs and provide better 
user experience, the infrastructure can 
direct queries to those models that 
would best benefit the users’ needs 
and SLAs. For example, it may decide 
to direct a query towards a faster 
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model due to network congestion to reduce the response time.

2.6.2.4 Systems Support for Collaborative Intelligence

One of the exiting directions for nowadays and future ML applications is 
Collaborative Intelligence where the edge devices communicate and interact 
directly for ML purposes. One example for such interaction would be smart cars 
that communicate and exchange information about traffic conditions and fast 
evolving situations to prevent life threatening events.

System support for collaborative intelligence may offer short communication 
paths, privacy, security, and authenticity of data and even help in processing as 
discussed earlier.
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3. Application of 5G Edge 
Automation and Edge Intelligence 

With the enablement of automation, optimization, and intelligent decision-
making for network and compute resource allocation, network function 
selection, as well as workload optimization at the 5G edge, various use cases 
can be realized with guaranteed QoS. This chapter provides a brief list of use 
cases together with their main challenges and describes how they can benefit 
from the application of automation and intelligence at the 5G edge. 

3.1 Autonomous Industrial Solutions
Industry 4.0 and new autonomous industrial use cases for intelligent factories 
bring strict requirements for computing and networking domains, challenging 
broadly utilized cellular technologies. Connectivity requirements will play a vital 
role in such autonomous systems. Future networks will need to support more 
than 37 billion connected [53] industrial IoT devices, from sensors through 
operational analytics to high-definition video analytics. From the autonomous 
industry connectivity perspective, six requirements will play a critical role to 
enable envisioned use cases:

• Latency – where worst-case latency requirements will drive manufacturing 
automation, electrical grind and intelligent homes use cases 

• High-speed bandwidth – to stream hundreds of video streams and run 
distributed real-time analytics is the critical for the manufacturing to 
process data

• Multi-tenancy –to provide secure access to the factory for multiple vendors 
at the same time 

• Autonomy / Self-configurability – for instance, where a network can self-
monitor and configure autonomously without human intervention, such as 
when a freshly discovered robot can join a network on-demand and get the 
required bandwidth and latency performance. Another case could involve 
the autonomous re-configuring of a failed node or broken segment of a 
network link.

• Security – where each part of the system, from the control plane to the 
user data, must be secure and preserve privacy at each stage of data 
processing

With the delivery of technologies to address the above requirements, 
autonomous industrial systems will bring a new generation of tools and 
technologies to increase productivity, efficiency, and safety. Tools like computer 
vision, machine learning, combined with sophisticated sensing capabilities, will 
improve the productivity, the inventory tracking, and the safety monitoring. 

Challenges and potential approaches

While some data transfer challenges for autonomous systems can be addressed 
by deploying new 5G equipment, the latency and bandwidth for industrial 
applications will need to be managed through a new form of autonomous 
orchestration fitted for industrial sectors. In addition to software frameworks, 
new deployments will need to move away from the standard manufacturing 
pyramid, to provide a unified Internet Technology (IT) and OT solutions through a 
Cyber-Physical Systems overlay. Other challenges and approaches include:
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Information Centric Networking - A 
machine-to-machine protocol like 
Open Platform Communications 
Unified Architecture (OPC UA) [54] 
will play a key role in data distribution 
in industrial systems. However, the 
overhead of TCP protocol when 
mapping names to IP addresses 
and its weak support for multicast 
communication are pushing academia 
and industrial partners to look 
into other approaches. One of the 
proposed solutions is Information-
Centric Networking (ICN) [55], 
where a unified control and data 
plane can simplify the onboarding, 
addressing, and communication 
patterns of industrial devices. 
ICN can also address increased 
dynamicity challenges where drones, 
collaboration robots (“cobots”), and 
mobile robots will need to move across 
the factory floor. 

Time Sensitive Networking - IEEE 
802.1 Time-Sensitive Networking 
(TSN) standards and integration with 
5G systems defined in 3GPP Rel. 16 
will enable TSN time synchronization 
and scheduled traffic to be delivered 
between TSN devices connected 
across a 5G system. Therefore, to 
provide effective mechanisms to 
schedule traffic between TSN capable 
networks and 5G will be an important 
capability for services such as cobots 
that will autonomously work side-by-
side with human workers or other 
cobots. Intelligent Edge co-optimized 
with wireless TSN can also enable 
compute and battery constrained 
collaborative mobile robots, to 
effectively leverage the Edge for 
advanced AI (perception, learning, 
cognition and adaptation), while 
meeting tight end-to-end latency and 
reliability requirements.

Co-system Determinism - Finally, co-
systems determinism for network and 
compute where subsystems will need 
to meet the expected delivery deadline 
every time will create new challenges 
as data will need to be transported 
often over long distances, potentially 
traversing multiple operators. New 
determinism requirements will need to 
be also addressed to deliver optimal 
solutions for factory multitenant setup.

The confluence of the mentioned 
industrial edge, OPC UA, TSN, 
industrial cloud (‘on prem’), and 
industry 4.0 use cases lead to 
significant architectural changes 
in Industrial Control Systems (ICS) 
that will directly influence 5G edge 
automation. On the other hand, the 
next iteration of industrial systems 
that will utilize 5G edge intelligence 
will be able to move away from a 
typical industrial multi-level factory 
overlay [56] into the autonomous and 
distributed factory automation system.

3.2 Intelligent Transport 
Systems 
Transportation systems are struggling 
to keep pace with the demands of 
our globally connected economy. The 
increasing trend toward urbanization 
is creating unprecedented challenges 
for city leaders around transportation 
infrastructure. In addition, today’s 
cities account for 71 to 76 percent 
of CO2 emissions [57], 67 to 76 
percent of global energy use, road 
safety challenges with 1.3 million 
deaths annually [58], and an 
economic impact of $305 billion due 
to congestion. As a result, rapidly 
growing cities are under pressure to 
address pedestrian safety, congestion, 
environmental issues, and resulting 
economic impact.

Smart Roadways and Intelligent 
Transportation Systems (ITS) are one 
of the most practical and near-future 
applications of edge automation and 
edge intelligence. These technologies 
help enable smart cities to overcome 
some of the most pressing operational 
challenges, such as increasing 
urbanization, energy efficiency, and 
congestion, that impact the daily lives 
of each citizen. edge automation and 
edge intelligence serve as the lifeblood 
for realizing an intelligent roadways 
vision through the deployment of 
multimodal sensors and real-time 
processing. Together, these combine 
to create efficient traffic management 
services, data collection, and real-
time analytics for road users and 
pedestrian safety. 

Edge computing and automation 
software frameworks, together with 
smart edge infrastructure may play a 

key role in orchestrating and managing 
the ITS applications in a world of 
distributed edge computing [59]. 
Thus, it is pivotal to create common 
platforms and architectures to help 
cities merge their IoT and networking 
workloads to achieve greater synergy 
and optimize their hardware solutions 
for a world in which expanding cities 
creates strain on transportation 
networks. To enhance the safety, 
reliability, efficiency, customer 
experience, and quality of a city’s 
transportation infrastructure, ITS 
technologies bring forth unique 
requirements in the form of confluence 
of computation and communication 
at the edge, enabling critical services 
for the infrastructure, vehicles, and 
other users of the transportation 
system. In this way, roadside edge 
computing infrastructure forms the 
basis for realizing the ITS vision of the 
future—Intelligent, connected roadway 
infrastructure that is resilient and can 
adapt to the needs of a growing and 
changing city. 

To this end, 5G connectivity 
(Vehicle-to-Infrastructure (V2I), 
Infrastructure-to-Pedestrian (I2P), 
Private wireless, etc.) combined with 
compute demanding capabilities 
such as multimodal sensing, 
accurate positioning/localization, 
are to be deployed at the roadside 
edge infrastructure to meet the 
bandwidth and latency requirements 
for transportation. Such capabilities 
would help to improve the efficiency, 
safety, and experience of all the road 
users, as well as generating an overall 
net positive impact on environmental 
greenhouse gas emissions. The V2I 
and I2P communications enable 
vehicles and other road users to 
communicate with static or movable 
road infrastructure nodes, sharing 
data that can improve operational 
coordination and efficiency. In ITS 
solutions, RSUs, vehicles, and other 
road users generate large amounts 
of time-sensitive data to be used 
for a variety of applications and use 
cases. Furthermore, as the network 
spectrum resources available for the 
ITS is limited, the data between the 
nodes need to be shared in a timely 
and reliable manner via bandwidth-
efficient communication. 
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Some of the important use case 
examples for ITS include, but are not 
limited to: 

• Sharing of perception, maneuver, 
and AI-workload models 
efficiently among entities using 
the road

• Enhancing Vulnerable Road User 
(VRU) safety 

• Offering value-added services
• Roadside virtual environments 

via digital twins with on-demand 
service orchestration at the edge 
infrastructure

Addressing the unique challenges 
posed by such use cases is key 
to offering reliability, safety, and 
efficiency in transportation. Thus, 
there is immense ongoing industrial 
efforts for enabling ITS with active 
collaboration with policy makers, 
automakers, manufacturers, cellular 
infrastructure operators (supporting 
C-V2X, 5G NR V2X, Dedicated Short-
Range Communications (DSRC), 
NextGen Wi-Fi, and beyond 5G 
networks) around the world. For 
seamless and unified integration of 
all such technologies in common 
socio-economic manner, it is crucial 
to actively advance the standards 
and technical bodies with the 
singular goal of using the benefits of 
technology across edge automation 
and intelligence to improve the lives 
of citizens across smart cities and 
transportation systems. 

3.3 Smart Energy and Smart 
Homes
Smart energy involves electricity, 
water, and gas delivered to customers 
through smart meters, which provide 
critical data to maximize the value 
of home automation systems and 
related IoT devices. A Smart Home 
is the integration of the utility smart 
meters and in-home devices enabled 
by an internal wireless radio link 
embedded in the smart meter. There 
are consumer level new services and 
products such as smart appliances, 
communicating thermostats, Heating, 
Ventilation, and Air Conditioning 
(HVAC) vent zone controllers, remote 
smart phone monitoring applications, 
sprinklers, and electric vehicle 
charging stations, etc.

A Smart Home helps conserve 
energy (electricity, gas and water), 
limit peak demand and increase 
overall delivery as well as endpoint 
efficiency. Home automation uses 
computers or smart phones to control 
basic home functions and features 
automatically, as well as allowing 
vital home functions to be controlled 
remotely from anywhere in the world 
through the Internet. A Smart Home 
should provide comfort, security, 
and the most cost-effective use of 
electricity, gas and water. Some home 
automation can include scheduling 
and automatic operation of water 
sprinkling, setting rules, swimming 
pool conditioning, heating and air 
conditioning, window coverings, 
security systems, lighting, food 
preparation, clothes washing and 
drying appliances, electrical vehicle 
charging – and many more tasks. 

To achieve these, the automation 
system must have access to several 
sets of data, which may include: total 
real time energy consumption, total 
accumulated energy usage, individual 
smart appliance and major load real 
time energy consumption, pricing 
information, customer preferences 
in terms of comfort parameters and 
cost containment, usage patterns, 
and many more. Sources of home 
automation data can be from several 
sources, including: the utility company 
and its billing systems, smart meters 
for real time and accumulated energy 
consumption and energy quality, as 
well as smart appliances such as 
thermostats, electric vehicle charging 
stations and smart sensors. 

Additionally, there are also challenges 
for home automation. As more devices 
are included in a Smart Home, more 
data is transmitted over the network, 
which may result in latency concerns 
if the data is transmitted to the cloud 
or the remote server is far away. 
Another concern may involve security 
and privacy risk when home data is 
transmitted to a public cloud. 

Edge computing should help home 
automation in multiple ways. The edge 
has powerful computing resources, 
which off-loads the computing task 
from homes. Edge networks can store 
more data than a home does, and 

the rich data is useful for AI/ML in the 
Edge, which can in turn help home 
automation. Moreover, as the edge is 
closer to the home user than a public 
cloud, it reduces communication 
latency. Edge may also help relieve 
the security concern with closed loops 
between edge compute servers and 
UE. In addition, with edge automation, 
the Smart Home can manage 
resources better, for example, to 
monitor battery power, and utilize the 
data in AI/ML training for predictive 
maintenance.

To better improve the home 
automation efficiency, AI at the edge 
can be implemented partially in edge 
devices and partially in the hubs 
and gateways through which they 
connect. With the joint AI capability, 
decision is more local to the user, 
without sending inquiry/query to and 
waiting for decision from an edge node 
or a device which is far away. The 
following are some examples where 
the performance can be influenced 
or improved by joint edge automation 
with device/hub/gateway. 

• Self-healing
• Monitor signal strength and 

prevent outage
• Detect jamming attack on the 

meters
• Automatic door opening

Beyond edge automation, edge can 
also help optimize the operations of 
components of Smart Energy and 
Smart Homes. As Smart Energy is 
distributed to homes from central 
locations such as factories or other 
energy generation facilities, it can be 
monitored for usage at the residence, 
thus allowing the whole energy 
distribution system to be optimized 
via load forecasting, distribution 
automation, and other energy grid 
optimization techniques. 

3.4 Connected Health 
Accelerated by the global COVID-19 
pandemic, telehealth solutions range 
from simple video conferencing 
sessions with medical professionals 
to sophisticated in-home monitoring, 
allowing healthcare workers to track 
progress and adjust treatments for 
remote patients. Secure, low-latency 
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connectivity, wearable devices, smart 
in-home sensors, and computer vision 
make virtual health management 
possible while reducing costs and 
increasing accessibility to healthcare. 
Additionally, experiments with remote 
surgery show promising results while 
edge-based computer vision enable 
flagging of health conditions in real-
time. Edge automation enables these 
types of solutions to make better 
and faster decisions while keeping 
computer vision models local where 
possible therefore maintaining 
compliance with privacy regulations.

3.5 Enabling Location 
Information 
Location information is essential for 
key services and applications with 
use cases such as precise e911, 
fraud prevention and mitigation, 
hyper-local customer applications 
such as weather, instant couponing or 
experience zones. It is also used for 
real-time network optimization.

While Global Positioning System 
(GPS) or device-provided location is 
commonly used, uplink-based location 
tracking has the advantage of better 
UE battery management and user 
control of the location info.

For the uplink-based method, Next 
Generation (NG)-RAN, an O-RAN 
node includes Next Generation 
NodeB (gNB) and real- and non-real-
time RICs that enhance traditional 
network functions with embedded 
intelligence. The gNB controls multiple 
Transmission Reception Points 
(TRPs) an antenna array with two or 
more antenna elements located at 
a specific geographical location for 
an area. Using Sounding Reference 
Signal (SRS) measurements at 
different TRPs, the uplink location can 
be calculated in real-time at a high 
level of accuracy – as low as sub-20 
meters. 

In addition to the mainstream use 
cases, this method enables velocity 
measurement that could provide 
crash detection capabilities as well 
as angle of arrival as an alternate 
method to barometric pressure for 
z-axis positioning which are critical for 
applications in automotive or industrial 

automation environments.

3.6 Cloud and Edge Gaming 
The demand for high quality, 
high throughput, and low latency 
is continuously increasing as a 
requirement for gaming platforms. 
For example, modern games expect 
gaming infrastructure to support vast 
amount of data processing to render 
frames at the highest quality at the 
highest frame rate possible, support 
for hardware-accelerated ray tracing, 
and AI capabilities plus a vast amount 
of storage space (e.g., 150GB of 
storage space per game install). 

The introduction of cloud gaming 
platforms enabled gamers to play on 
any device connected to the Internet 
without the need to upgrade their 
client gaming platforms. Cloud gaming 
offers two models of operation, 
frame streaming and command 
streaming model. The frame streaming 
model eliminates the need for high-
performance GPU and storage in the 
client platform by rendering the game 
in the cloud instance and stream 
the encoded frames to the client 
device. The command streaming 
model eliminates the storage needs 
at the client by launching the game 
in the cloud instance and stream the 
GPU APIs and data to render a frame 
using the client GPU. Though the 
frame streaming model offers better 
throughput, the end-to-end user input 
to display latency in cloud gaming is 
much higher than the client gaming 
platforms and potentially degrades 
the overall gaming experience. 
Additionally, the transcoding and 
streaming content from the cloud 
to the client under varying network 
conditions brings visual quality 
variations. 

As low latency requirements, link 
variability, and available bandwidth 
are still challenging, new approaches 
related to the 5G edge and MEC space 
are being considered to dynamically 
distribute rendering between cloud, 
edge, and client based on latency 
budget, bandwidth, or acceleration 
requirements of the gaming workload. 
The 5G plane enables a new way of 
accessing streamed game content 
inside and outside the home giving 

new experiences to the users. Edge 
automation can therefore lower the 
latency, as well as manage additional 
latency requirements added by 
additional network or compute cycles. 
It provides a path to bring a true end-
to-end gaming experience that can 
leverage edge to perform a hybrid 
of frame streaming and command 
streaming models to deliver highly 
responsive gaming experience without 
sacrificing quality and frame rate.

3.7 Scalable Digital Twin
A Digital Twin (DT) is a real-time virtual 
representation of a physical entity 
such as an object, a system, or a 
process. Using connected sensors, 
this cyber-physical technology permits 
connectivity and synchronization 
between the physical components 
and their digital counterparts. Further, 
through analytics and simulations 
using the digital model, the Digital 
Twin technology can produce future 
predictions with rich insights about the 
physical entity. 

The unique characteristics of DT 
technology has several potential 
applications in the fields of 
infrastructure, smart cities, 
manufacturing, natural resources, 
healthcare, etc. For example, in 
ITS, DTs can accurately simulate 
transport network of a city and can 
optimize traffic efficiency, planning 
and development of transport 
infrastructure. In manufacturing, the 
DT technology has demonstrated 
disruptive impact on handling complex 
processes like product lifecycle 
management, asset maintenance, 
production line efficiency optimization, 
etc.

So far, the DT technology has seen 
limited adoption in the industry 
due to its stringent requirements 
on communication and computing 
infrastructure. In large scale 
applications such as in smart city, ITS, 
or manufacturing, the DT technology 
needs to collect data from a large 
number of connected sensors, and it 
is not yet viable to transport all these 
data to the data center for processing. 
On the other hand, DT also requires 
powerful computation resources to 
analyze the sensor data, simulate 
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complex digital models, and generate future predictions in real-time.

The combination of 5G and edge technologies can provide feasible and cost-
effective solutions to realize DT applications. Edge computing allows processing 
of sensor data close to the source, thus avoiding the need to transport large 
amounts of data over long distances. Alongside, the low-latency communications 
offered by 5G can help to achieve real-time service requirements of the DT 
applications. On the computational front, microservices based architecture can 
provide a scalable and flexible solution for the DT system to keep up with the 
analysis and simulation tasks in real time.
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Conclusion 

5G and edge computing are two intertwined technologies that will converge and work together to significantly improve 
the performance of applications and enable massive amounts of data to be processed in near real-time at different 
locations (edge zones). Edge automation and optimization with AI/ML can help to automate and optimize network system 
processes and service delivery at each available edge zone or throughout multiple edge zones. The ultimate goals of this 
symbiosis between 5G and edge involve increased performance guarantees, enhanced workload balancing, improved 
processing capabilities and times via 5G edge automation and optimization, reduced human intervention up to zero-touch 
management and orchestration. Edge intelligence, based on the low latency, high reliability 5G connection at edge and the 
AI/ML processing power provided by edge computing enables pervasive intelligence on all connected edge devices, as well 
as distributed data analysis and distributed learning on connected edge devices. 

Equipped with AI/ML-driven capabilities, the 5G edge can be further augmented. Differentiation is crucial between AI/
ML-based solutions for the network to control, manage, and orchestrate resources and functions and how systems should 
be designed to improve the performance and resource utilization of AI/ML-based solutions. Integrating AI/ML advances to 
5G edge automation will enrich human experience, enable autonomic decision-making with adaptive policies, and reduce 
or eliminate human errors. The implementation of AI/ML-driven optimization at the 5G edge enables the adaptation to 
evolving situations, conditions, and diverse environments as well as seeing through the complex interactions between 
various components of a system and optimizing the resource usage. 

5G edge automation and optimization can enhance the 5G edge with various new features and enable multiple key 
technologies. In this white paper, some key features and technologies related to data collection and processing, context 
discovery and situational awareness, how to handle (network) dynamics, explainable AI, multi-access, distributed learning, 
and achieving the joint optimization of communication and computing have been discussed. An analysis of requirements 
followed discussion around potential directions for network architecture to demonstrate the gaps and needs for enabling 
the discussed key features and technologies. Finally, a list of selected use cases demonstrates key benefits and 
challenges facing industries today regarding 5G edge automation and optimization.
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Acronyms

3GPP: 3rd Generation Partnership 
Project 

5G: 5th Generation 

AI: Artificial Intelligence 

IAIOps: AI Operations 

AIMD: Additive Increase/
Multiplicative Decrease 

API: Application Program Interface 

AR: Augmented Reality 

BBU: BaseBand Unit 

C-SON: Centralized SON 

CEI: Collaborative Edge Intelligence 

CNF: Cloud-native Network Function 

CPU: Central Processing Unit 

COTS: Commercial Off-The-Shelf 

CSP: Cloud Service Provider 

CSMF: Communication Service 
Management Function 

CU: Centralized Unit 

DNN: Deep Neural Network 

D-SON: Distributed SON 

DSRC: Dedicated Short-Range 
Communications 

DT: Digital Twin 

DU: Distributed Unit 

ECaaS: Edge Compute-as-a-Service 

EN-DC: Evolved-Universal Terrestrial 
Radio Access New Radio Dual 
Connectivity 

ETSI: European Telecommunications 
Standards Institute 

FPGA: Field Programmable Gate 
Arrays 

GMA: General Multi-Access 

gNB: Next Generation NodeB 

GPU: Graphical Processing Unit 

GPS: Global Positioning System 

GSMA: Global System for Mobile 
Communications Alliance 

HCP: Hyperscale Cloud Provider 

HVAC: Heating, Ventilation, and Air 
Conditioning 

I2P: Infrastructure-to-Pedestrian 

IaaS: Infrastructure-as-a-Service 

IAB: Integrated Access and Backhaul 

ICN: Information Centric Networking 

ICS: Industrial Control Systems 

IEEE: Institute of Electrical & 
Electronic Engineers 

IID: Independent and Identically 
Distributed 

IoT: Internet of Things 

IP: Internet Protocol 

IPSec: Internet Protocol Security 

ISR: Intelligence, Surveillance, and 
Reconnaissance 

IT: Internet Technology 

ITS: Intelligent Transportation 
Systems 

LCM: Life Cycle Management 

LF: Linux Foundation 

LFU: Least-Frequently-Used 

LLS: Lower-Layer Split 

LRU: Least-Recently-Used 

MANO: Management and 
Orchestration 

MDA: Management Data Analytics 

MEC: Multi-Access Edge Computing 

MEF: Mobile Ecosystem Forum 

ML: Machine Learning 

MNO: Mobile Network Operator 

MR: Machine Reasoning 

NAT: Network Address Translation 

NDN: Named Data Networking 

NFV: Network Function Virtualization 

NG: Next Generation 

NR: New Radio 

NSI: Network Slice Instance 

NSMF: Network Slice Management 
Function 

NSSMF: Network Slice Subnet 
Management Function 

NWDAF: Network Data Analytics 
Function 
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Acronyms

OAM: Operations Administrations 
and Management 

O-Cloud: Orchestrator and Cloud 
Platform 

ONAP: Open Networking Automation 
Platform 

ONF: Open Networking Foundation 

O-RAN: Open Radio Access Network 

OT: Operational Technology 

PaaS: Platform-as-a-Service 

PCF: Policy Control Function 

PoP: Point of Presence 

QoS: Quality of Service 

RAN: Radio Access Network 

RAT: Radio Access Technology 

RIC: RAN Intelligent Controller 

RSU: RoadSide Units 

RU: Radio Unit 

SDN: Software Defined Network 

SFG: Security Focus Group 

SI: System Integrator 

SLA: Service Level Agreement 

SON: Self-Optimizing/Organizing 
Network 

SRS: Sounding Reference Signal 

TCP: Transmission Control Protocol 

TIP: Telecom Infrastructure Project 

TLRU: 
Time-aware Least-Recently-Used 

TM: Traffic Management 

TMF: Tele-Management Forum 

TRP: Transmission Reception Points 

TSG: Technical Specification Group 

TSN: Time Sensitive Networks 

UDP: User Datagram Protocol 

UE: User Equipment 

UP: User Plane 

UPF: User Plane Function 

UWB: Ultra-Wide Band 

V2I: Vehicle-to -Infrastructure 

VNF: Virtual Network Function 

VPN: Virtual Private Network 

VR: Virtual Reality 

VRU: Vulnerable Road User  

XAI: Explainable AI 

ZSM: Zero-Touch Network and 
Service Management 
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